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Editorial
Who is this mysterious Jeremy? The editors have long been 
asking this question, for the magazine has been clouded in 
conspiracy ever since its enigmatic beginnings in 1986. One 
theory is that the magazine was named after Jeremy Bentham, 
a 19th century philosopher and social reformer whose mum-
mified body remains on display in the University College 
London. A second theory is that the magazine’s namesake is 
Jeremy Rutherford, second cousin to Ernest Rutherford and 
long serving ticket collector on the London Underground. Yet 
another theory harkens back to the day when Harry Messel 
(the Head of the School of Physics in the 80’s), after attempt-
ing a tracking experiment which involved “flying round in a 
helicopter shooting anaesthetic bullets into polar bears and 
then landing on the ice to mark them,”1 decided to instead 
track crocodiles; was Jeremy the name of one of Messel’s 
crocodiles? After much distress the editors came across an 
old, flaky letter from 1986 in an abandoned corner of the phys-
ics storeroom, which made the following claim: The maga-
zine was originally named after Jeremy Trefam, a little-known 
20th century physicist who, while working on a connection 
between prime numbers and energy spectra,2 wrote in a letter 
to a friend that he had discovered a marvellous pattern hid-
ing within quantum mechanics that allowed for its unification 
with gravity, but which was too long to fully describe in the 
letter’s margins. Shortly after sending the letter, he died of 
a sudden stroke, carrying the secret of quantum gravity with 
him. Is this the true origin of Jeremy’s name? The editors are 
hopeful, but we may never know for sure. 

Quote of the Issue

“The Earth is flat”
					     - Prof. Tim Bedding

Cheeky context: Tim lecturing PHYS2923 and assuming the gravi-
tation field to be uniform. i.e. the Earth is flat (obviously!)

1.    Donald D. Millar, ‘The Messel Era’, 1987
2.    Number theory is filled with quirks, like Fermat’s Last Theorem; its fascinating history is too long to fit in this footnote, but have a google.

Meet the School of Physics

Issue 1, 2025 The Physics Society Magazine

Meet our beloved leader, Prof. Tara Murphy! Animal-lover, literature fanat-
ic, and astrophysicist extraordinaire, Tara often finds herself wondering: if I 
went back in time to ancient Australia or Medieval Europe with modern in-
ventions like radios and antibiotics, how would it alter the course of history?

Would you like to publish your work? Whether it 
is a short and fun blurb, or a full-on scien-
tific paper, Jeremy is a place to kick off your 
scientific ingenuity! Send your submissions to: 

Jeremy.physoc@gmail.com 
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Monoceros
By Masashige Akioka

I went along Midsummer’s night, 
Along coasts as white as carcass, 
Shooting bare gummed worries into,the 
Sea— 
Like pennies 
Tossed into fountains. 
 
Alone, as an eloper’s witness, the Moon 
watched over me 
And her tedious eye unfailing, never 
ailing,  
Redoubled convictions that an hour had 
gone paling, 
And in fit of madness, I began solilo-
quy: 
 
‘Upon the shoulders of giants,’ Newton 
Foreshadowing his stature on eternity 
(or his fixture in ours), 
Compares nothing to nothing to Nyx’s 
speckled gown  
—Tonight, she wears that same impos-
sible dress, 
Ancient, named even in Ptolemy’s 
Almagest 
And what will I do. 
And nothing changes. 
 
“Forty-eight names to name the sky 
And where will I… what is there to do? 
Since nothing changes.” 
 
And long I asked myself: 
“This inevitable sky; this irrefutable 
sea?” 
—When along Moon’s ichor pathway 
A horse came down from heaven, 
Shook its mane and spoke to me! 
 

1. Said “Ridpath I twenty twelve.”

“Dreams and stars,” spoke the horse, 
“are born to die 
But never yet has death won over life: 
For long as there is living, stars in 
skies, 
And laughs, then woe to permanence 
and strife. 
“Fourteen billions, the age of Time 
itself 
And mere millions, the age of babe 
suns 
Plucked like encyclopaedias from 
shelves 
Called nebulae, through which the 
cosmos runs. 

“Of types of nebulas, you must know 
three: 
Absorption, emission and reflection, 
Whose uniting nature it seems to be 
Is altering starlight before you see. 
“Blue stars emit their hot celestial light, 
Reflection nebulae gather themselves, 
And dusty clouds rebound in sapphires 
bright. 
—So, it is said (Ridpath, I, 2012)1.  

“Red gasses cold suffused of ancient 
star 
Give light though dim (emission nebu-
la), 
Irradiated by those hot orbs blue; 
(Ridpath, I, 2012) declares it true. 

“And finally, there is that cosmic lack 
Where starlight gets absorbed into the 
dark 
And we are left with nothing more than 
black, 
Says (Ridpath, 2012) if it could bark.” 

The beast was cast of celestial dust, 
Moors of gold. I felt myself sewing 
shadows through 
As if to gouge a hollow, 
As if to imprint myself upon it, with a 
word: 
“But beast,” I said, “where is there 
change? 
Is the universe a box of wilting leaves 
and nothing strange? 
“I have seen the great eclipse and 

(White, T, 2024) Fox Fur and Cone Nebula

(Star Registration, 2025) Monoceros Constellation 
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nothing, 
I have suffered the mediocrity of my 
life, 
I have waged a war, and I have rebel-
lion, 
And it was all for nought, 
Since nothing changes.” 
 
Curious. Now the creature turned and 
an ivory protrusion 
Like dawn that breaks the night 
Split its eyes. 
 
“Two thousand, four hundred light 
years away, 
A young “Cone Nebula” stands bold 
alive, 
In NGC22642  it stays (SEDS, 2025)3.  
 
“It’s only quite young, five or a cou-
ple…
Million years is the age of its blue, 
Relative youth in the cosmic timescale 
(Parker and Schoettler, 2022)4.  

“From dense and giant molecular 
clouds 
(Determined by watching runaway 
stars5) 
A million years has formed those large 
shrouds 
Whose mountainous body hides bright-
ly hue, 
Of stars that were made in that cosmic 
churn 
(Parker and Schoettler, 2022).

“Absorption Nebula is not alone, 
But points to the ruddy face of its 
friend, 

2. Said “N G C two two six four.”
3. Said “S E D S two thousand, twenty five.”
4. Said “twenty twenty two.”
5. That is, stars traveling faster than 30 km/s.
6. The Fox Fur Nebula is a small section of the Christmas tree cluster.
7. That is, hydrogen gas.

Who also deserves an ode of its own 
Of which I joyously sing till the end. 

“Oh, Fox Fur Nebula, small segment 
free 
Of that large complex, cluster Christ-
mas Tree,6  
Your single proton coat7  emitting light 
(Stimulated by those stars hot and blue, 
Their radiation ultraviolet bright) 
Gives your pelage that reddish-ferrous 
hue!
 
“Your aquamarine highlights, your 
shimmer, 
 Follows the ruffle and billow of gas 
And its sparce composition gives, alas, 
A blue sort of shining, a 
little bit dimmer.”

 
The 
great beast 
stopped and 
went mute, 
Pearls and sugar could not 
draw it from silence’s hand now. 

“Which constellation, and which atom 
of the sky?”
And the horse went backward, with a 
sigh 
To its origin in heaven.
 
Long I stood upon my sandy station, 
Till I saw the beast arrive 
At his shifting celestial destination 
To his home within the sky. 
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Gravity: An Entropic Force.
Exploring the realm unveiled by the Second Law of Thermodynamics 
By Murray Jones

  The realm of physics is a changeable 
one. 
 
  Our cutting-edge theories are developed 
then rebutted, modified and changed day 
in day out. 
 
  Different takes on almost any idea, 
from quantum gravity to dark energy, 
briefly surface to the popular eye only to 
once again be buried in obscurity almost 
as quickly as they arrived.
With one exception.

“Thermodynamics is the only physi-
cal theory that has never been over-
thrown.”

		      -Max Planck1 

“If your pet theory of the universe 
is in disagreement with Maxwell’s 
equations then so much the worse for 
Maxwell’s equations. If it is found to 
be contradicted by observation -- well 
experimentalists do bungle things 
sometimes. But if your theory is found 
to be against the Second Law of Ther-
modynamics, I can give you no hope; 
there is nothing for it but to collapse in 
deepest humiliation.’’

		  -Arthur Eddington2 

“General relativity and quantum me-
chanics are so fundamentally different 
that bringing them together in a single 
theory is a daunting challenge.’’

		  -Leonard Susskind3 

So, when faced with a daunting chal-
lenge, why not build a theory based off 
of the one, single law, that we believe 
is totally insurmountable: The Second 
Law of Thermodynamics.

1.    Ref. A Survey of Physical Theory by Max Planck (1915)
2.    Ref. The Nature of the Physical World by Arthur Eddington (1928)
3.    Ref. The Black Hole War by Leonard Susskind (2008).

Processes naturally evolve 
to maximise the entropy of 

the universe.

  Today, my friends, we are go-
ing to build a complete theory of 
gravity, based solely on entropy.  
 
  Let’s start with the simplest possible ex-
ample, then work our way up from there. 

This, right here, is a tetrahedron:

Now, I’m going to impose two very spe-
cific rules on our tetrahedron:
1.	  First, we can shine rays along any 

of the edges. An edge either has a 
ray on it, or it doesn’t. Like so:

  It doesn’t matter what it’s a ray of; it 
could be light, could be electrons, what-
ever. So long as it carries a causal effect, 
it’ll do.
2.	 Second, if a vertex of the tetrahe-

dron doesn’t have any rays going to 
it, we put at least one particle there:

  We don’t want the particles getting in 
the way of the rays, but apart from that 
we can stick in as many as we like:

  Okay. Now, in our tetrahedron we have 
six possible ray paths, each along an 
edge, which we’ll label 1 to 6. Each path 

can either have a ray on it, or be emp-
ty. So, we have six possible degrees of 
freedom.

  That means there are a total of  
possible states for our rays.

  Now, for the sake of simplicity, let’s 
consider states that strictly have exactly 
two particles. They could be on the same 
vertex, or on different ones, but there 
must be exactly two of them in there. 
 
  And now the game begins! We throw 
in an allowed starting configuration 
(doesn’t matter which) ...

... and grab ourselves a die!
  Rolling the die, we note down the 
number, and . . .

A. if that ray path already has a 
ray in it, we make it empty, 
unless doing so would cause 
there to be more than two 
vertices that could contain 
particles.

B. If that ray path is empty, we 
put a ray in it, unless do- 
ing so would leave no possi- 
ble spots for the particles on 
an empty vertex.

  Now, by repeating this process - throw-
ing our dice over and over  simulating 
the Thermodynamic Limit - we generate 
a whole host of possible arrangements 
of our rays:
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… and so forth. There’ll be 22 possible 
arrangements of our rays4. You get the 
gist.

  Now, in this model there’s no explicit 
force between the particles on the verti-
ces of our tetrahedron, so one might haz-
ard a guess that they’ll just jump around 
randomly and be together as often as 
they’re apart.

That guess would be wrong.

  There are 16 possible states where 
they’re on the same vertex, but only 6 
possible states where our particles are 
on different vertices.
  
  Since each state in our tetrahedron 
model is equally likely in the long run, 
our particles will be together more of-
ten than they’re apart.
  
  Now, this may seem intuitively back-
ward, but since the microstates we’re 
considering are those of our rays, it does 
actually work out.
 
  Now, “what”, you may very well ask, 
“was the point of all that!?”.
 
That, my friend, was a toy.
 
  A toy model intended to show you the 
rules of our game in the simplest possi-
ble scenario.

Time to ramp things up a notch.
 
  Consider this two dimensional space, 
criss-crossed by a large number of in-
finitely long ray paths. Some have rays 

4.    Note that the particles don’t contribute to the entropy of our system, because we’re essentially modeling them as voids through which a ray of causal-
ity cannot pass. More on that later.

on them (grey lines), and some don’t but 
theoretically could (black lines). Each 
ray path is an elementary degree of free-
dom of our system.

  The whole network forms a discrete 
Planck-scale configuration from which 
the planar space emerges.
 
  This is called a ‘Mikado Universe’, but 
that’s really just a big fancy name for ba-
sically the same thing that we’ve already 
seen on our tetrahedron:

•	 Each ray path is like one of the edg-
es of our tetrahedron, with empty 
ray paths making no contribution to 
the entropy of the system.

•	 We can add in two objects as shown 
below. This time they’re simply cir-
cles of a fixed radius.

  The key point here is that the rules of 
our system haven’t changed; the objects 
aren’t allowed to block rays, so any ray 
path that passes through an object must 
be empty.

Time to toss the dice.

  After setting an allowed initial con- 
dition (like the one shown above), 
we label our ray paths 1, 2, 3, ..., , 
then flip an  sided die, note down 
what we roll, and ...

A. If the ray path has a ray on 
it, we make it empty.
B. If the ray path is empty, we 

put a ray on it, unless do-
ing so would leave no region 
large enough for our circle 
of a fixed radius to move to 
without crossing other rays.

  Repeating this over and over and 
over, something very interesting 
begins to occur:

Our objects move closer together.

  Simply by playing our dice game 
-- following the rules of our system 
-- we observe a tendency for any two 
objects to move closer together over 
time, even though all they’re doing is 
chilling in the gaps between the rays, 
with no explicit force between them.  
 
  If you followed what was going on in 
our tetrahedron model, this shouldn’t 
seem all that weird. It’s the second law 
of thermodynamics at work:
•	 When the two objects are far apart, 

each object requires a certain num-
ber of ray paths to be empty, there-
fore reducing the total entropy of 
our system by some value.

•	 When the objects are closer togeth-
er, each still requires that all ray 
paths passing through it be empty, 
however, this time there’ll be some 
overlap, since many of the ray paths 
will pass through both objects. These 
don’t need to be counted twice, so 
the total entropy reduces less when 
the objects are closer together.

  So, since more possible configurations 
means greater entropy, and our rock-sol-
id Second Law of Thermodynamics is 
doing its level best to maximise the en-
tropy of the universe, entropy itself is 
causing our two objects to be attracted 
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to each other.

  Phew, okay. Now, this might seem ex-
tremely bizarre, but entropic forces are 
actually a really well established concept 
in Chemistry. They’re the driver behind 
osmosis, and are directly responsible for 
the elasticity of long chain polymers.

  All we’ve done is extend this con-
cept by considering a system of 
ray paths that allows us to mod-
el Gravity as an Entropic Force. 
 
  Still not convinced? Well, let’s put 
some maths to the problem.
 
  Let’s start by calculating the gain in the 
entropy  as the distance  between the 
objects reduces.
 
  We’ve already established that the en-
tropy gain is occurring due to ray paths 
crossing both objects, so what we real-
ly want to consider is the scaling of this 
value
                     

where the  values are the radii of each 
object.
 
  Now, the entropic force  will be pro-
portional to the gradient of this value. So

              
where the negative sign indicates that 
the force is attractive.
 
  Right. Now it’s time to take a deep 
breath, because this next bit is properly 
weird.
 
  One of the key assumptions for our 
model was that rays can’t go through ob-
jects. By our own definitions, rays were 
anything that carried a causal influence. 
So, in this model, no causal influence 
may leave our objects.

Sound familiar?
 
  Yup, we’ve just gone and modeled 
every particle of matter as a black hole. 

5.    Ref. J Koelman and many, many others.

But don’t panic! Most of the (hypothe-
sised) weirdness of black holes comes 
from space-time curvature -- which was 
more or less a side effect of Einstein’s 
explanation of gravity. Here we have 
a model for gravity that doesn’t need 
space-time curvature, so we don’t really 
have to worry about any of that.
  
  In fact, there’s only one property of 
black holes that we’re going to need 
to consider here, and that is that their 
radius is proportional to their mass.  
 
So, we can write:

                     
  And this right here is Newton’s Law of 
Gravitation -- or at least the guts of it 
-- derived from purely thermodynamic 
principles.

BUT WE’RE NOT DONE YET!
Ho ho no we are not!

  Newton’s Law of Gravitation is an an-
tique little trinket that’s been moping 
around since 1687. We can do better! 
 
  This same principle of entropic force 
can, in fact, be used to fully derive Ein-
stein’s Field Equations.
  
  The heart of General Relativity can be 
conjured up from our insurmountable 
Second Law of Thermodynamics, with-
out having to rely on notions of space-
time curvature.
  
  I’m not going to try and work through 
the gory maths of that here, partly be-
cause Jeremy has page limits, and partly 
since Liu Tau already has a very elegant 
derivation of it in his 2020 paper Holo-
graphic Theory, Emergent Gravity, and 
Entropic Force.

Instead, we’ll strike at an even grander 
prize.

Dark Energy.

  Our universe is expanding increasingly 

rapidly, and nobody seems quite able to 
agree on why.
  
  In lieu of an explanation, physicists have 
taken to terming the effect ‘dark energy’.  
 
  Whatever dark energy is, it’s very weak. 
Its energy density is so low, with a val-
ue of approximately  natural 
units, that it does basically nothing on 
all but the most enormous cosmic scales.  
 
  This minuscule value of  
has been a real headache for a lot of 
physicists for a long time. Straightfor-
ward calculations based on Quantum 
Field Theory predict that the value 
should be pretty close to one.
  
  That’s a disagreement between theory 
and measurement of 123 orders of mag-
nitude. A discrepancy that many have 
termed ‘‘the biggest embarrassment in 
the history of theoretical physics”.5

 
  But, by taking cosmic acceleration to 
be the result of an entropic force ... we 
can solve this -- and it’s actually really 
easy.
 
  Consider, if you will, a computer 
screen. The screen itself is only two di-
mensional, and yet it can display com-
plex 3D graphics with no trouble at all.

  To describe something three dimen-
sional, we need only two  dimensions. 
 
  This, in a nutshell, is the Holographic 
Principle,  and  very   soon  it’s going to allow 
us to make a very important assumption.  
 
  The biggest thing that we definitely 
know exists is the observable universe. 
For all practical purposes, it’s a ball with 
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a radius of approximately  
natural units.6

By the Holographic Principle, encod-
ing the information contained with-
in this ball -- the observable universe 
-- should require one fewer dimen-
sions: A spherical surface of radi-
us  natural units. We 
call this surface the cosmic horizon. 
 
  So, our assumption from the Holo-
graphic Principle is that all of the infor-
mation in the observable universe can 
be encoded in  ‘bits’, located 
on the cosmic horizon. Yes we’ve lever-
aged our natural units quite heavily here 
-- but that’s the nice thing about natural 
units -- we can do that!
 
  So, now that we’ve got our  
‘bits’ -- degrees of freedom -- located 
on the cosmic horizon, we can do some-
thing truly clever.
  
  Per the equipartition theorem, the en-
tire energy  (simply  in 
natural units) of the observable universe 
can be evenly distributed over these de-
grees of freedom located at the cosmic 
horizon, with each degree of freedom 

6.    Natural units are a system of units achieved by setting Boltzmann’s constant, the speed of light, the gravitational constant, and the reduced Plank 
constant to all be simply one. With them, we no longer need to consider most of the constants in our equations, and have far fewer unit conversion issues 
to worry about than we would if we were using the metric system. Natural units can still scale linearly to metric.

contributing an energy of , where 
 is Boltzmann’s constant.

 
  This means we can associate a finite 
temperature  with the cosmic horizon. 
Here  is the mass of the 
observable universe, so

             

  Now, by applying the holographic 
assumption to the definition of En- 
tropic Force:

             

  Now, since dark energy density and 
cosmic acceleration are equivalent 
by definition when using natural 
units, we can compute a value for 
the dark energy density predicted 
by our entropic model as follows:

                

  Finally, using newton’s second law, 
, we get:

              

Lo and behold.

  We’ve just built a model of Dark Ener-
gy that matches observations for which 
the widely accepted Quantum Field 
Theory fails spectacularly.

References
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3.	 J Koelman. (2010, March 26). 
Entropic Gravity For Pedestrians. 
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4.	 J Koelman. (2010, January 18). 
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An agitating breeze ruffles through 
Einstein’s notebook. It is the autumn of 
1915, and he has not been able to sleep 
for days. Amidst a roaring world, he 
can feel his fingertips closing around 
the cloth draping the universe, but time 
is ticking as the world’s greatest mathe-
matician joins the race to discover the 
dance of our universe’s garment - Ein-
stein furrows his brow, deep in thought...

The passage of time is closely interwo-
ven with distances in space, for they are 
shadows of the same whole. Time and 
space are braided together into a sin-
gle 4D manifold clothing the universe 
which curves, giving rise to gravity. 
This spacetime garment’s behaviour can 
be captured within an Equation, and the 
streets of Göttingen are holding their 
breath in anticipation as Albert Einstein 
and David Hilbert race to find this Equa-
tion. Where could we begin to look?
 
It is helpful to first picture spacetime as a 
large rubber sheet. A point on this sheet 
represents an event, a certain place at a 
moment in time, which can be described 
by four numbers,  called 
coordinates. To save ink, let’s write these 
numbers as ; Greek symbols like 

  mean “run through all four coordi-
nates”.1

To describe spacetime, we need the no-
tions of direction and change at a single 
point. Luckily, there already exist math-
ematical objects that do this! 

To examine a function in the direction 
of the  coordinate, the partial deriva-
tive  is used. Taking away the func-

1.    \is an index which runs from 0 to 3, labelling the coordinates as  .

2.    Figure 1 only shows a 2D cross-section of spacetime that has been embedded into three dimensions for visualisation purposes, since it is not easy to 

intrinsically visualise four dimensional manifolds.
3.    I use the convention throughout that repeated indices implicitly sum over all four coordinates.
4.    Tensors satisfy a transformation rule ensuring that they are coordinate independent.
5.    From now on I will name vectors, covectors, and tensors after their abstracted components, leaving out the implied ’s and  ’s.
6.    The inverse metric tensor  does the opposite, turning covectors into vectors.

tion and leaving just the partial deriva-
tive, we see that it is an object encoding 
direction at a point. There are four such 
objects, , one for each coordinate. 
Let’s draw them as little red arrows (see 
Figure 1)2.

Figure 1. A 2D depiction of spacetime with tangent and 
cotangent spaces at a point containing the vector , or 

, and covector , or  (drawn on Desmos).

To compare how a function changes 
overall as the  coordinate changes, the 
total derivative is taken, which is the 
function’s infinitesimal ratio with . 
Treating  as an object in its own right, 
we see that it encodes change at a point. 
There are four such objects, , which 
will be drawn as little orange arrows.

The ’s and ’s are like Lego 
bricks; these basis elements are our fun-
damental building blocks, and at each 
point in spacetime they can be put to-
gether in different combinations.

Something can be built from just the 
little red arrows by first taking a cer-

tain amount of each ; the amounts, 
or components, are written as . We 
then add up the little arrows weighted 
by these components to give an object 
called a vector , which looks 
like a larger arrow3. Straight objects 
like vectors cannot be built on a bumpy 
rubber sheet, so they need a flat tray to 
live in, called a tangent space (the green 
plane in Figure 1).

Similarly, something can be built using 
just the little orange arrows by summing 
over the ’s weighted by components 

 to give a dual object called a covec-
tor , which again looks like 
a larger arrow. Covectors need their own 
flat home at the same point called a co-
tangent space.

Pairs of the little arrows can also be 
combined together, for example, one red 
and one orange. Each pair combination 
is weighted by a component  (up-
stairs indices for little red vector arrows 
and downstairs indices for little orange 
covector arrows), and summing up these 
weighted combinations gives an object 
called a tensor 
, which can be visualised as a  
matrix4. Tensors live in mansions atop 
the tangent and cotangent trays at each 
point in spacetime.

The star of the show is ready to make 
their appearance - enter the metric tensor 

, who plays the role of the unknown 
variable in the coveted spacetime equa-
tion5. Their power is to yank a vector  
into the cotangent space, turning it into 
the covector  while transforming its 
new components6. This power is used to 

The Race to Beat Einstein
By Peter Lavilles
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define the notions of length and angle, 
hence capturing the geometry, or overall 
shape, of spacetime.

Since length involves quantifying 
change along a direction, the squared 
length of a vector  is determined by 
first yanking it into the cotangent space 
using  and then adding up the prod-
ucts of components7, or
 
   

A peculiarity of spacetime is that 
squared lengths of vectors don’t have 
to be positive. We see light travelling 
at a speed , but light sees itself travel-
ling instantaneously (speed is relative!) 
since its motion (spacetime velocity 
vector) has zero squared length. Any-
thing we see moving slower than  has 
positive squared length and is causally 
possible. If we saw something moving 
faster than , its motion would have 
negative squared length and it would 
see itself moving back in time. Thus, by 
determining length, the humble  de-
fines time travel!8 

The angle  between two vectors  and 
 is found again using ’s yanking 

ability, in analogy to the dot product:

In our Solar System, spacetime’s ge-
ometry bends so that the planets move 
freely with a constant angle relative to 
their separation from the Sun. By deter-
mining angle,  places the planets into 
orbit.

The protagonist  who controls space-
time’s geometry has been found, but we 
need to know what actually pushes on 

7.    This is the exact same machinery as the dot product, which first yanks a column vector into a row vector (with the same components since  is the 
identity matrix in flat cartesian space) then adds up the products of components, yielding the vector’s squared length.
8.    ‘Forwards in time’ can be chosen to have either a positive or negative signature.
9.    Energy  is equal to relativistic mass  (the object’s resistance to direction-changing forces) weighted by .  is equal to  weighted by the 
object’s velocity.
10.    The rate of change of momentum is force , and stress is force per area; it is called pressure if it is perpendicular, and shear stress if it is 
parallel.
11.     and  describe volume-changing curvature caused by internal  sources; the Weyl tensor describes shape-distorting curvature, or follow-on 
tidal effects from far-away sources, hence does not appear in the equation.
12.    The component  parallel transports the basis vector  around infinitesimal parallelograms with  as one axis, inner products (pro-
jects) its deviation onto each parallelogram’s second axis, and sums up these projection amounts.

spacetime to make it curve! The antago-
nist now takes the stage, the stress-ener-
gy-momentum tensor . 

The latter gives the flux of energy and 
momentum through spacetime. What 
the heck does that even mean?? Well, 
energy  is the amount of oomph ob-
jects have through time; anything with 
mass contains energy. Momentum  
is the amount of oomph objects have 
through space; a train hurtling toward 
you contains a lot more momentum than 
a train crawling past9. Think of energy 
and momentum together as a fluid sub-
stance flowing like a river through spa-
cetime.

Finding flux through spacetime involves 
cutting spacetime into 3D slices with 
different orientations and measuring the 
flow of the energy-momentum `fluid’ 
through them. If a cross section perpen-
dicular to the time direction is taken, 
then `flux’ is the same thing as density, 
or the amount of stuff per spatial vol-
ume. The first column of the matrix 
gives the density of energy and momen-
tum. The other columns of  measure 
cross sections perpendicular to each 
spatial direction, where ‘flux’ means the 
rate of change per spatial area. The flux 
of momentum can be further separated 
into pressure (diagonal terms) and shear 
stress (off-diagonal terms)10.

In a stroke of genius, Einstein realised 
that gravity is an effect from the curva-
ture of spacetime’s geometry, as caused 
by . The protagonist  is joined 
by their sidekicks, the Ricci tensor  
and Ricci scalar , who describe cur-
vature11.

Place two marbles on the spacetime 
sheet in Figure 1 and let them roll freely 
side by side. The curvature in the sheet 
sometimes makes the marbles move 
closer together, and this ‘attraction’ is 
what we call gravity. The effect occurs 
because time and space have bunched 
up. To quantify this squashing, push a 
pin into the peak of the hill in Figure 1 
and tie a short length of string to it with 
a pencil attached at the other end. Keep-
ing the string tight and trapped to the 
surface, rotate it to draw a circle with the 
pencil and paint its interior. This circle 
contains less area (uses less paint) than a 
circle of the same radius drawn on a flat 
piece of paper, because the string is able 
to capture more area in flat space than in 
cramped `positively curved’ space. For 
infinitesimal lengths of string, the differ-
ence in area between these two circles is 
called the Gaussian curvature .

To find the top-left  component of 
, cut spacetime into the three 2D 

orientations that contain the  direction, 
and sum up the  for each of these 
cross-sectional slices (Figure 1 shows 
the  cross-section). The diagonal 
terms of  give the total  for 2D 
cross sections containing the th di-
rection. ’s off-diagonal terms do a 
similar thing, but measure curvature in-
teractions between different directions12. 
This effect can be entirely packaged into 
a nice single number , which is like 
a 4D analogue of . Instead of tracing 
out a circle with the pencil, we trace out 
an infinitesimal 3-sphere, and  gives 
the difference in its 4D volume between 
flat and curved space.

We are nearly at the finish line! All of 
the characters for the equation have 
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been found, and now they are just miss-
ing a script. We will place the source 

 on the right side of the Equation, so 
the effect of curved spacetime geometry 
involving , , and  must be on 
the left side. The final leg of the race is 
to guess what combination they appear 
in.

To do this, the local conservation of the 
energy-momentum fluid is imposed: in 
small regions, energy and momentum 
cannot be created or destroyed. We need 
to see how the vectors making up this 
fluid change over spacetime, but, since 
vectors live in separate tangent spaces 
at different points, we can’t just use the 
partial derivatives  which are stuck 
within a single tangent space. Instead, 
we choose an upgraded version of the 
partial derivative called the covariant 
derivative , which can creep around 
a curved space without twisting13. En-
forcing the conservation of energy-mo-
mentum simply requires that  has 
zero divergence, or 14. 
Therefore, whatever is on the left side 
of the Equation also requires zero di-
vergence for consistency. Here a bit of 
maths comes in handy. Curvature satis-
fies certain properties, one of which is 
the Second Bianchi Identity. By plod-
ding through some manipulations, it can 
be used to show that the specific com-
bination  has zero diver-
gence. The non-twisting  we chose 
also tells us that  has zero diver-
gence, so a constant multiple of it can 
be added to the left side. Finally, putting 
the left and right sides together, we find

After an exotic journey, we have dis-
covered the final spacetime equation! 

13.     can be chosen in many ways, but there is a unique such choice called the Levi-Civita connection that both preserves the metric and has zero 
torsion, or ‘twisting’.
14.    This condition sets up continuity equations for the local conservation of  and . We have ‘raised the indices’ of  by using  to yank its under-
lying basis covectors into vectors.
15.    J. Wheeler ‘Geons, Black Holes, and Quantum Foam’ (1998)
16.    They are highly nonlinear coupled second-order partial differential equations that are notoriously difficult to solve. There are 10 because the tensors 
are symmetric.
17.    In small enough regions spacetime appears flat, so  is the identity matrix except with , and, like , ’s diagonal terms give 
energy density and pressure.
18.    I. Todorov, `Einstein and Hilbert: the creation of general relativity’ (2005)

Within its ciphers lies a thrilling drama. 
The free motion of objects is guided by 
the geometry of spacetime  and yet 
the distribution of the universe’s objects 

 pushes on  to make it curve in 
the form of , setting up an end-
less conversation between the universe 
and its constituents. In the words of 
Wheeler, ‘‘Spacetime tells matter how 
to move; matter tells spacetime how to 
curve.”15  is a constant (a certain num-
ber) that controls how sensitive space-
time is to curving.  and  are ex-
pressible in terms of  and each index 
runs through four coordinates, so equa-
tion (1) actually describes ten equations 
in the unknown components of .16 

 is a number called the cosmological 
constant, which tells its own remarkable 
story. If  is positive and it is placed on 
the right side of the equation, it acts as 
a source of constant positive energy in 
the vacuum of space with negative pres-
sure17. It was recently discovered that 
some unknown energy source called 
dark energy is driving an accelerated 
expansion of the universe, and  may 
well be this mystery energy.

The equations have been found, but who 
won the race? Hilbert presented an alter-
native formulation of the equations via 
an action-minimising principle five days 
before Einstein, but Einstein, the orig-
inator of the whole program, was the 
first to publish the equations as present-
ed here (initially without the  term).18 
In honour of the physicist who founded 
the revolutionary theory of gravitation-
al spacetime, or general relativity, these 
ten equations are known as the Einstein 
Field Equations.

A sudden idea flashes up and Einstein’s 
mind starts racing. Could it work? He 
grabs his pen and starts writing symbols 
in his notebook, scribbling through lines 
of maths, and... it works. He is already 
running out the door, rushing to the 
Prussian Academy of Sciences to pres-
ent his final equations that shatter the 
old paradigm of gravity. When Newton’s 
apple fell from a tree, it was being guid-
ed by a garment of time and space that 
ripples and curves in an endless cosmic 
dance.
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  The end of the universe. It’s something humans from all 
civilisations have pondered. From ancient speculation to 
modern theories of the Big Crunch or Heat Death of the 
cosmos on a massive cosmological scale. But what if there 
were a mechanism for our demise baked into fundamental 
quantum physics, capable of obliterating us in an instant; 
and what if I told you that this same mechanism is key for 
the foundational stages of the Big Bang? What if I told you 
it also lends a hand to modern developments in a variety of 
technologies? And best of all, that we can wrap our minds 
around the core idea of this process through a journey that 
takes us through the (post-Newton) language modern physics 
is written in, and alongside one of Feynman’s boldest ideas? 
I’d say you’d be about as stoked as Peter Higgs in 2012 - 
maybe even more, since you don’t need a billion-dollar 
collider to read this article.  Introducing – a classical model 
for false vacuum decay.

Equipping our toolset

  Let’s get concrete. The Higgs field, which critically 
underpins the fundamental physics of our universe, can align 
into a shape that resembles one of Fig 1 (the symmetric 
double well) or Fig 2 (the asymmetric double well).  
In fact, this alignmnent is what breaks the electroweak 
symmetry in the early universe, giving  bosons their 
mass. The question of which double well is at the moment 
not fully resolved, but luckily both problems are reasonably 
tractable, especially with a simpler approach: instead of 
considering the 3-dimensional field  as a function 
of position, we will simply by analogy consider a single 
function of time . 

  We could write a simple model for this well’s potential as

  

where  could be the position of a quantum particle, or the 
value of a field;  is the well’s width and  its height, 
and  a small parameter characterising a shift from the 
symmetric well towards asymmetry. For the symmetric double 
well, we’ll address the case , and for the asymmetric 
well we will lift it to . Each minimum of the well is 
a state a particle could be in; for instance the Higgs field’s 
current minimum determines its non-zero vacuum expectation 
value of , which in turn gives it the ability to 
imbue certain particles with their mass.

  Now that we have our potential, we want to ask the question: 
what is the probability that a particle (or field) could 
transition from one state to the other? This question carries 
a great significance, for if the Higgs field exists in a ‘false 
vacuum’ state (i.e. a state that looks stable locally but is not 
the global minimum of potential, which would be the ‘true 
vacuum’) like that of the asymmetric well, there may be a 
probability of it tunnelling to the lower energy state. This 
would rapidly expand a ‘true vacuum bubble’ in all directions, 
kicking all Higgs fields into the global minimum and activating 
radically different laws of physics wherever it touches. The 
subsequent decay that ensues would be ‘the ultimate ecological 
catastrophe’ [2], releasing vast amounts of energy, and possibly 
increasing entropy significantly. The fundamental laws that 
currently allow our atoms, our cells, and those of stars to be 
stable would be completely rewritten, and we may dissolve 
into mere quarks and electrons, or even just pure energy. 
The double well potential here actually goes far beyond 
genuinely permitted but sci-fi-sounding armageddon scenarios. 
It can also be used in quantum gates, information processing, 
the generalised Josephson effect, or even as recently as 2024, 
when a genuine vacuum decay of a particular order parameter 
was observed in ferromagnetic superfluids [3].

  To make our question more precise, we will visit 
the Lagrangian formalism of classical mechanics. 
Remember Newton’s force law , the foundation for 

Figure 2: Asymmetric double well as described by Eq.1, 

Figure1: Symmetric double well as described by Eq.1, 

Vacuum Decay: A Simple Blueprint for 
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essentially any problem in first-year mechanics involving 
predicting motion of objects. Now, remember how sometimes 
it was easier to analyse a problem with respect to energy 
conservation? The more sophisticated version of this is 
something called the Lagrangian, and for our purposes it is 
equivalent to kinetic energy  minus potential :

                               

From this, like how Newton’s law would give us a differential 
equation of motion in terms of  via , we also extract 
an equation of motion from the Lagrangian by minimising 
‘action’ (described soon):

                              

and for our potential, this gives

                           

  Again, this is just a more sophisticated version of , 
and indeed here it reduces to that case if you plug in the right 
variables.

Now, if you were to imagine a ball in a ‘valley’ outlined by Fig 
1 or 2, initially sitting still, there is no classical chance it could 
roll from one minimum to another. But we know about quantum 
tunnelling, where particles of energy  can surmount the odds 
and cross through a barrier of energy . There is in fact an 
easy fix to implement this tunnelling into our theory, but it may 
shatter your currently established conceptions of space-time.  
The trick is to \emph{rotate time to become imaginary} 
(called ‘Euclidean time’): 

                                    

If we accept this bit of ‘magic’, and twist our derivatives to 
incorporate , we see in  that the relative sign of the kinetic 
to potential energy flips; equivalently, we could imagine the 
potential of Fig 1 to be upside down, as in Fig 1. Now it’s 
perfectly intuitive to imagine a ball rolling down from the top 
of the hill, picking up some speed, and then coming to a stop 
at the top of the other hill, i.e. our old minima!1

1.    And don’t worry too much about any physical interpretations of this ‘imaginary time’ - we can just think of it as an equivalent, but much easier com-
putational path to our transition probability.
2.    Technically, extremises, since are just asking for the first derivative to be 0.

  Now for the so-called ‘action’. An analogy helps: think of a 
particle as a submarine, and the Lagrangian as ‘amount of fuel 
used per second’. The pilot of this submarine will of course 
take the allowed path which minimises the total amount of 
fuel used, even if there might be many other paths which 
use more fuel. This total amount of fuel used per path is the 
‘action’. We can define it mathematically as:

                     

where the subscript E here stands for the fact that we are 
working in Euclidean (‘imaginary’) time. Finding the path 
which minimises2 this action is directly what gives the 
equations of motion from before!

  Now our final tool needed is the ‘Feynman propagator’ 
. Here we throw out the classical notion of a particle only 
taking one given path, and embrace the quantum notion first 
introduced by Feynman: particles simultaneously take an 
infinite number of different paths. It’s hard to imagine for our 
submarine, but that’s because we have monkey throw rock 
brains, not photon travel through slit brains. (Yes, the double 
slit experiment for particles can be explained by this notion 
too!)

.. The propagator then represents a transition amplitude from a 
point  to a point . In Euclidean time, it can be calculated 
as:

                

Here we are integrating over all possible paths with the fancy 
; and the  factor can be interpreted as a probability 

for each path. This actually explains, from a quantum 
perspective, why we minimise action to obtain our classical 
paths: we are taking the quantum  classical limit , and 
the only path that survives is that with the lowest action . 
Importantly, the physical interpretation of this propagator is 
that its square-modulus  gives the probability of 
transition.

  So we have reduced our question from the vague “how do 
we calculate transition probability between minima” into the 
more computationally tractable “let’s perform an integral 
over all paths to get the Feynman propagator, using Euclidean 
time”. Let’s give it a shot!

Symmetry comes first

  Firstly, there is some analogy to the classical approach 
which finds only a single path between two points. The way Figure 3: Asymmetric double well as described by Eq. 1, with the same parameters from 2, 

viewed in Euclidean time, resulting in a flipped potential.
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to think about our approach here, is that we will find a sin-
gle, classical, ‘most probable’ path (in Euclidean time),  
then account for all possible deviations from that path weight-
ed by probability, to give an approximate answer from the rest 
of the propagator machinery. We will do this first for the sym-
metric well, and then for the double well.

  The most probable path is ironically the exact solution a clas-
sical particle living in Euclidean time would take. By solving 
the equation of motion, to get an absolute minima for the ac-
tion, we meet the final character of this story: the instanton. 
This is a kink between the two minima (or maxima in Eu-
clidean time) of the potential well, following the shape of a 
hyperbolic tangent curve:
                     

Figure 4: An instanton, described in Eq. 6, moving from -a to a in Euclidean time.

  We can calculate the action, and thus the propagator, straight-
forwardly for this solution, obtaining an action
                            

Now we can modify the action of a single instanton to incor-
porate all possible paths (from one minimum to another) in 
two main ways.

First, once the particle has followed an instanton (I) and estab-
lished its position at one minima, after a sufficient amount of 
time, it could follow an ‘anti-instanton’ (Ai) back to the first 
minima. And keep doing this, over and over. Each different 
arrangements A path with I  Ai  I  Ai  I is less likely 
than a simple I, or a I  Ai  I path with less Ai  I pairs; 
but since we are integrating over all possible such paths, we 
must still include these.

  Second, the particle could wiggle a bit along the way to 
another minima, deviating from the standard instanton 
curve. To incorporate this we introduce a deviation term 

 in our new path , and then inte-
grate over all such . I won’t get into the details of this or 
any other spicy integration that happens here, but there’s 
a pretty nifty infinite-dimensional generalisation of the 
Gaussian integral to calculate the final propagator here.  
As well as this, the fact that we are allowed to expand about 
our  in the first place is essentially the result of the steep-

est-descent approximation to an integral 
                                    

containing a local minima of  with .

  Our final result for the symmetric well then ends up with the 
following form:
                              
 
where to simplify, this  is a constant which absorbs any of 
the other quantum fluctuations emerging from the above dis-
cussion. This form will be of great help to us in the next sec-
tion as we tackle the asymmetric well.

Tackling asymmetry head-on

  Now when we consider the case  in our poten-
tial from earlier, we find that the minima on the left tilts 
to a lower potential. Furthermore, both minima shift 
left from  by , so our path must be different. 
Since this deviation  is assumed to be small, we can assume 
our new ‘classical’ path  is only a small deviation 
away from the instanton path, 
                       

where we characterise the asymmetric (A) deviation through 
the function ε. Substituting this ansatz into the equation of 
motion Eq. 3, and neglecting high order terms like , we 
obtain a new differential equation to solve for ε (with over-
dots being ):

                       

It turns out to be too difficult to extract any direct solutions 
from this. Instead, we borrow the classic physics trick of ap-
proximate-and-hope-it-works. We analyse separate asymp-
totic regions:  and . Imposing the boundary 
conditions that our particle does eventually reach the minima 
despite any deviation along the way, and using a third order 
power series for the  region (the most informative ap-
proximation that could be made easily solvable), we obtain 
three distinct solutions. We can glue these together by setting 
the boundaries between the regions as  (the same as 
the instanton width), and enforcing that ε is continuous and 
differentiable at these boundaries; the result is seen in Figure 
5.
  Armed with this classical path we can now move onto cal-
culating the Euclidean action, and then shortly after the tran-
sition probability, using the  approximation of 
earlier.
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Findings of questionable accuracy

  However what we can do, which is much more instructive, is 
to graph the results we get, as a function of , and in particu-
lar the ratio of our new calculated propagators  (where 

 stands for transitions to the minimum with larger potential 
energy, and  toward the lower potential energy) against the 
symmetric . In these graphs  is the amount of time we 
wait for the transition to occur; i.e. if  has elapsed and still 
no transition, we pack up and leave, not waiting for any more. 
All other variables , ,  are set to 1.

  On the whole we see some expected trends, and some un-
expected. In Figure 6 as expected, these ratios approximately 
coincide for ; and one grows while the other shrinks, re-
flecting the transition probabilities spreading apart as the min-
ima do. However, the graphs have got the order ‘the wrong 
way around’, and imply the transition to lower energy is less 
likely than a transition to higher energy!

  Here’s an even weirder graph (Figure 7). If we increase the 
time window to 10, then almost everything looks wrong: the 
ratios both grow above 1, and then both drop to 0 for higher 
. So a transition becomes almost impossible if the energy dif-
ference is too negative? What? Additionally, tunnelling should 
surely be more probable, not less, if we have given more time 
for the particles to move.

  So we perhaps followed through on some promising alge-
bra, but when all was calculated and done, we have some 
blatantly unphysical results. It is therefore blindingly obvious 
some error in calculation has occurred, whether it be in the 
various approximations made, particularly that of assuming 
Eq. 8 would hold for the asymmetric case, or just in one of 
the endless pages of algebra. At best it is a lesson that not 
everything works out as expected the first time in science, 
that throwing approximations haphazardly at a calculation 
won’t necessarily yield a stable result, and that evaluating a 
result is always a crucial check; at worst a message to me to 
return to kindergarten and start my education from scratch. 
 
  But let this not extinguish the flame of wonder within your 
heart for scientific progress. You now have some powerful 
tools for tapping into the quantum and classical world alike. 
And how remarkable that these allow us to analyse the fate of 
the entire universe! The calculations herein may be inaccurate, 
but still they give us a glimpse into possibilities of cosmic 
significance: that the Higgs field of the vacuum itself could 
destabilise and unravel physics as we know it, and with this, 
reality itself. A simple jump between two local minima could 
result in the entire universe being destroyed in an instant. 
 
  So perhaps you feel implored to carry the torch forward 
and re-think these calculations, or perhaps to explore some 
new universal consequences of quantum effects entirely; the 
choice is yours. But I hope you leave here with this new un-
derstanding: with science we venture close to understanding 
the deep fabric of reality, and the most profound questions 
that still elude the human race - questions that could, in the 
end, determine if our universe is permitted to continue at all. 
 
  PS: You may be reassured to hear that using a full, field-the-
oretic model, but still no shortage of assumptions, that the 
probability of this universe-ending decay was found to be ex-
ponentially suppressed (very small); though some uncertainty 
does certainly remain! [1].

Figure 5: Graph of  for all regions simultaneously, showing continuous differentiability at 
region boundaries  as well as throughout.

Figure 6: Ratios of propagators to  case plotted on a linear scale against  for 

Figure 7: Ratios of propagators to  case plotted on a linear scale against  for 
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And that is a wrap for another issue of The Physics Society’s home-
grown magazine, Jeremy! Whether it was from questioning the es-
sence of thermodynamics, to understanding the fabric of spacetime 
a little more, or even finding interest in cosmic doom, we hope that 
you enjoyed this read!

Join us soon for another fascinating issue later during the semester!

And don’t forget to follow our socials on Instagram and the PhySoc 
website. 

Also do not hesitate to contact us via
jeremy.physoc@gmail.com for ideas, article submissions, or an-
ything else.

Catch you later everyone!
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Guess the rebus!

Geocaching Puzzle
The University of Sydney is home to a lovely courtyard, nestled between the new Sydney Nanoscience Hub (opened in 
2016) and the Physics building (opened a little less than a century ago in 1926). Here, you are welcome to use the shaded 
benches and tables to enjoy some much-needed outdoor time. 

Clue: Follow the commute of the setting sun. No ladders (or spaceships) needed. (Bonus: send us a photo of your completed 
geocache for limited edition Jeremy merch!)

Crossword of the Issue

Make sure to follow 
the Puzzle Society, 
who kindly gave us 
puzzles for this sec-
tion(Clue: Famous Physicist)

Follow our socials 
@jeremy_usyd

 for the solution to the puzzles!
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