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The Physics Society Magazine

Editorial

Who is this mysterious Jeremy? The editors have long been
asking this question, for the magazine has been clouded in
conspiracy ever since its enigmatic beginnings in 1986. One
theory is that the magazine was named after Jeremy Bentham,
a 19th century philosopher and social reformer whose mum-
mified body remains on display in the University College
London. A second theory is that the magazine’s namesake is
Jeremy Rutherford, second cousin to Ernest Rutherford and
long serving ticket collector on the London Underground. Yet
another theory harkens back to the day when Harry Messel
(the Head of the School of Physics in the 80°s), after attempt-
ing a tracking experiment which involved “flying round in a
helicopter shooting anaesthetic bullets into polar bears and
then landing on the ice to mark them,”' decided to instead
track crocodiles; was Jeremy the name of one of Messel’s
crocodiles? After much distress the editors came across an
old, flaky letter from 1986 in an abandoned corner of the phys-
ics storeroom, which made the following claim: The maga-
zine was originally named after Jeremy Trefam, a little-known
20th century physicist who, while working on a connection
between prime numbers and energy spectra,” wrote in a letter
to a friend that he had discovered a marvellous pattern hid-
ing within quantum mechanics that allowed for its unification
with gravity, but which was too long to fully describe in the
letter’s margins. Shortly after sending the letter, he died of
a sudden stroke, carrying the secret of quantum gravity with
him. Is this the true origin of Jeremy’s name? The editors are

hopeful, but we may never know for sure.

Meet the School of Physics

Quote of the Issue

“The Earth is flat”

- Prof. Tim Bedding

Cheeky context: Tim lecturing PHYS2923 and assuming the gravi-
tation field to be uniform. i.e. the Earth is flat (obviously!)

Would you like to publish your work? Whether -t
is a short and fun blurb, or a full-on scien-
tific paper, Jeremy 1is a place to kick off your
scientific dingenuity! Send your submissions to:

Jeremy.physoc@gmail.com

Meet our beloved leader, Prof. Tara Murphy! Animal-lover, literature fanat-
ic, and astrophysicist extraordinaire, Tara often finds herself wondering: if |
went back in time to ancient Australia or Medieval Europe with modern in-
ventions like radios and antibiotics, how would it alter the course of history?

1. Donald D. Millar, ‘The Messel Era’, 1987

2. Number theory is filled with quirks, like Fermat’s Last Theorem; its fascinating history is too long to fit in this footnote, but have a google.



Monoceros

By Masashige Akioka

I went along Midsummer’s night,
Along coasts as white as carcass,
Shooting bare gummed worries into,the
Sea—

Like pennies

Tossed into fountains.

Alone, as an eloper’s witness, the Moon
watched over me

And her tedious eye unfailing, never
ailing,

Redoubled convictions that an hour had
gone paling,

And in fit of madness, [ began solilo-

quy:

‘Upon the shoulders of giants,” Newton
Foreshadowing his stature on eternity
(or his fixture in ours),

Compares nothing to nothing to Nyx’s
speckled gown

—Tonight, she wears that same impos-
sible dress,

Ancient, named even in Ptolemy’s
Almagest

And what will I do.

And nothing changes.

“Forty-eight names to name the sky
And where will I... what is there to do?

Since nothing changes.”

And long I asked myself:

“This inevitable sky; this irrefutable
sea?”

—When along Moon’s ichor pathway
A horse came down from heaven,

Shook its mane and spoke to me!

“Dreams and stars,” spoke the horse,
“are born to die

But never yet has death won over life:
For long as there is living, stars in
skies,

And laughs, then woe to permanence
and strife.

“Fourteen billions, the age of Time
itself

And mere millions, the age of babe
suns

Plucked like encyclopaedias from
shelves

Called nebulae, through which the

COSmMOS runs.

“Of types of nebulas, you must know
three:

Absorption, emission and reflection,
Whose uniting nature it seems to be

Is altering starlight before you see.
“Blue stars emit their hot celestial light,
Reflection nebulae gather themselves,
And dusty clouds rebound in sapphires
bright.

—So, it is said (Ridpath, T, 2012)".

B Monocerotis

ukida

(Star Registration, 2025) Monoceros Constellation

“Red gasses cold suffused of ancient
star

Give light though dim (emission nebu-
la),

Irradiated by those hot orbs blue;
(Ridpath, I, 2012) declares it true.

(White, T, 2024) Fox Fur and Cone Nebula

“And finally, there is that cosmic lack
Where starlight gets absorbed into the
dark

And we are left with nothing more than
black,

Says (Ridpath, 2012) if it could bark.”

The beast was cast of celestial dust,
Moors of gold. I felt myself sewing
shadows through

As if to gouge a hollow,

As if to imprint myself upon it, with a
word:

“But beast,” I said, “where is there
change?

Is the universe a box of wilting leaves
and nothing strange?

“I have seen the great eclipse and

1. Said “Ridpath I twenty twelve.”



nothing,

I have suffered the mediocrity of my
life,

I have waged a war, and I have rebel-
lion,

And it was all for nought,

Since nothing changes.”

Curious. Now the creature turned and
an ivory protrusion

Like dawn that breaks the night

Split its eyes.

“Two thousand, four hundred light
years away,

A young “Cone Nebula” stands bold
alive,

In NGC2264? it stays (SEDS, 2025)°.

“It’s only quite young, five or a cou-
ple...

Million years is the age of its blue,
Relative youth in the cosmic timescale
(Parker and Schoettler, 2022)*.

“From dense and giant molecular
clouds

(Determined by watching runaway
stars®)

A million years has formed those large
shrouds

Whose mountainous body hides bright-
ly hue,

Of stars that were made in that cosmic
churn

(Parker and Schoettler, 2022).

“Absorption Nebula is not alone,
But points to the ruddy face of its

friend,

Who also deserves an ode of its own

Of which I joyously sing till the end.

“Oh, Fox Fur Nebula, small segment
free

Of that large complex, cluster Christ-
mas Tree,’

Your single proton coat’” emitting light
(Stimulated by those stars hot and blue,
Their radiation ultraviolet bright)
Gives your pelage that reddish-ferrous

hue!

“Your aquamarine highlights, your
shimmer,

Follows the ruffle and billow of gas
And its sparce composition gives, alas,
A blue sort of shining, a

little bit dimmer.”

The

great beast
stopped and
went mute,
Pearls and sugar could not

draw it from silence’s hand now.

“Which constellation, and which atom
of the sky?”

And the horse went backward, with a
sigh

To its origin in heaven.

Long I stood upon my sandy station,
Till I saw the beast arrive

At his shifting celestial destination

To his home within the sky.

2. Said “N G C two two six four.”
3. Said “S E D S two thousand, twenty five.”
4. Said “twenty twenty two.”

5. That is, stars traveling faster than 30 km/s.

6. The Fox Fur Nebula is a small section of the Christmas tree cluster.

7. That is, hydrogen gas.



4 Gravity: An Entropic Force.

Exploring the realm unveiled by the Second Law of Thermodynamics

By Murray Jones

The realm of physics is a changeable

one.

Our cutting-edge theories are developed

then rebutted, modified and changed day
in day out.

Different takes on almost any idea,

from quantum gravity to dark energy,
briefly surface to the popular eye only to
once again be buried in obscurity almost
as quickly as they arrived.

With one exception.

“Thermodynamics is the only physi-
cal theory that has never been over-

thrown.
-Max Planck’

“If your pet theory of the universe
is in disagreement with Maxwell’s
equations then so much the worse for
Maxwell’s equations. If it is found to
be contradicted by observation -- well
experimentalists do bungle things
sometimes. But if your theory is found
to be against the Second Law of Ther-
modynamics, 1 can give you no hope;
there is nothing for it but to collapse in
deepest humiliation.”
-Arthur Eddington’

“General relativity and quantum me-
chanics are so fundamentally different
that bringing them together in a single
theory is a daunting challenge.”
-Leonard Susskind®

So, when faced with a daunting chal-
lenge, why not build a theory based off
of the one, single law, that we believe
is totally insurmountable: The Second
Law of Thermodynamics.

Processes naturally evolve
to maximise the entropy of
the universe.

Today, my friends, we are go-
ing to build a complete theory of
gravity, based solely on entropy.

Let’s start with the simplest possible ex-
ample, then work our way up from there.

This, right here, is a tetrahedron:

Now, I’m going to impose two very spe-

cific rules on our tetrahedron:

1. First, we can shine rays along any
of the edges. An edge either has a
ray on it, or it doesn’t. Like so:

{

It doesn’t matter what it’s a ray of; it
could be light, could be electrons, what-
ever. So long as it carries a causal effect,
it’ll do.

2. Second, if a vertex of the tetrahe-
dron doesn’t have any rays going to
it, we put at least one particle there:

{

We don’t want the particles getting in
the way of the rays, but apart from that
we can stick in as many as we like:

¢

Okay. Now, in our tetrahedron we have
six possible ray paths, each along an
edge, which we’ll label 1 to 6. Each path

can either have a ray on it, or be emp-
ty. So, we have six possible degrees of
freedom.

That means there are a total of 26 = 64
possible states for our rays.

Now, for the sake of simplicity, let’s
consider states that strictly have exactly
two particles. They could be on the same
vertex, or on different ones, but there
must be exactly two of them in there.

And now the game begins! We throw
in an allowed starting configuration
(doesn’t matter which) ...

... and grab ourselves a die!
Rolling the die, we note down the
number, and . . .

A. if that ray path already has a
ray in it, we make it empty,
unless doing so would cause
there to be more than two
vertices  that could  contain
particles.

B. If that ray path is empty, we
put a ray in it, unless do-
ing so would leave no possi-
ble spots for the particles on
an empty vertex.

Now, by repeating this process - throw-
ing our dice over and over simulating
the Thermodynamic Limit - we generate
a whole host of possible arrangements
of our rays:

1.

3.

Ref. 4 Survey of Physical Theory by Max Planck (1915)
2. Ref. The Nature of the Physical World by Arthur Eddington (1928)
Ref. The Black Hole War by Leonard Susskind (2008).
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... and so forth. There’ll be 22 possible
arrangements of our rays*. You get the
gist.

Now, in this model there’s no explicit
force between the particles on the verti-
ces of our tetrahedron, so one might haz-
ard a guess that they’ll just jump around
randomly and be together as often as
they’re apart.

That guess would be wrong.

There are 16 possible states where
they’re on the same vertex, but only 6
possible states where our particles are
on different vertices.

Since each state in our tetrahedron
model is equally likely in the long run,
our particles will be together more of-
ten than they’re apart.

Now, this may seem intuitively back-
ward, but since the microstates we’re
considering are those of our rays, it does
actually work out.

Now, “what”, you may very well ask,
“was the point of all that!?”.

That, my friend, was a toy.
A toy model intended to show you the

rules of our game in the simplest possi-
ble scenario.

Time to ramp things up a notch.

Consider this two dimensional space,
criss-crossed by a large number of in-
finitely long ray paths. Some have rays

on them (grey lines), and some don’t but
theoretically could (black lines). Each
ray path is an elementary degree of free-
dom of our system.

The whole network forms a discrete
Planck-scale configuration from which
the planar space emerges.

This is called a ‘Mikado Universe’, but
that’s really just a big fancy name for ba-
sically the same thing that we’ve already
seen on our tetrahedron:

» Each ray path is like one of the edg-
es of our tetrahedron, with empty
ray paths making no contribution to
the entropy of the system.

*  We can add in two objects as shown
below. This time they’re simply cir-
cles of a fixed radius.

The key point here is that the rules of
our system haven’t changed; the objects
aren’t allowed to block rays, so any ray
path that passes through an object must
be empty.

Time to toss the dice.

After setting an allowed initial con-
dition (like the one shown above),
we label our ray paths 1, 2, 3, ..., N,
then flip an IV sided die, note down
what we roll, and ...

A. If the ray path has a ray on
it, we make it empty.
B. If the ray path is empty, we

put a ray on it, unless do-
ing so would leave no region
large enough for circle
of a fixed radius to move to

without crossing other rays.

our

Repeating this over and over and

over, something very interesting

begins to occur:

Our objects move closer together.

Simply by playing our dice game
-- following the rules of our system
-- we observe a tendency for any two
objects to move closer together over
time, even though all they’re doing is
chilling in the gaps between the rays,
with no explicit force between them.

If you followed what was going on in
our tetrahedron model, this shouldn’t
seem all that weird. It’s the second law
of thermodynamics at work:

*  When the two objects are far apart,
each object requires a certain num-
ber of ray paths to be empty, there-
fore reducing the total entropy of
our system by some value.

*  When the objects are closer togeth-
er, cach still requires that all ray
paths passing through it be empty,
however, this time there’ll be some
overlap, since many of the ray paths
will pass through both objects. These
don’t need to be counted twice, so
the total entropy reduces less when
the objects are closer together.

So, since more possible configurations
means greater entropy, and our rock-sol-
id Second Law of Thermodynamics is
doing its level best to maximise the en-
tropy of the universe, entropy itself is
causing our two objects to be attracted

4. Note that the particles don’t contribute to the entropy of our system, because we’re essentially modeling them as voids through which a ray of causal-

ity cannot pass. More on that later.



to each other.

Phew, okay. Now, this might seem ex-
tremely bizarre, but entropic forces are
actually a really well established concept
in Chemistry. They’re the driver behind
osmosis, and are directly responsible for
the elasticity of long chain polymers.

All we’ve done is extend this con-
cept by considering a system of
ray paths that allows us to mod-
el Gravity as an Entropic Force.

Still not convinced? Well, let’s put
some maths to the problem.

Let’s start by calculating the gain in the
entropy S as the distance R between the
objects reduces.

We’ve already established that the en-
tropy gain is occurring due to ray paths
crossing both objects, so what we real-
ly want to consider is the scaling of this
value

~ r1:T9
S R

where the r values are the radii of each
object.

Now, the entropic force F' will be pro-
portional to the gradient of this value. So
4as _ —riry
Frgg = p
where the negative sign indicates that
the force is attractive.

Right. Now it’s time to take a deep
breath, because this next bit is properly
weird.

One of the key assumptions for our
model was that rays can’t go through ob-
jects. By our own definitions, rays were
anything that carried a causal influence.
So, in this model, no causal influence
may leave our objects.

Sound familiar?

Yup, we’ve just gone and modeled
every particle of matter as a black hole.

But don’t panic! Most of the (hypothe-
sised) weirdness of black holes comes
from space-time curvature -- which was
more or less a side effect of Einstein’s
explanation of gravity. Here we have
a model for gravity that doesnt need
space-time curvature, so we don’t really
have to worry about any of that.

In fact, there’s only one property of
black holes that we’re going to need
to consider here, and that is that their
radius is proportional to their mass.

So, we can write:
F o~ ZMmy
R2

And this right here is Newton s Law of
Gravitation -- or at least the guts of it
-- derived from purely thermodynamic
principles.

BUT WE'RE NOT DONE YET!
Ho ho no we are not!

Newton’s Law of Gravitation is an an-
tique little trinket that’s been moping
around since 1687. We can do better!

This same principle of entropic force
can, in fact, be used to fully derive Ein-
stein’s Field Equations.

The heart of General Relativity can be
conjured up from our insurmountable
Second Law of Thermodynamics, with-
out having to rely on notions of space-
time curvature.

I’m not going to try and work through
the gory maths of that here, partly be-
cause Jeremy has page limits, and partly
since Liu Tau already has a very elegant
derivation of it in his 2020 paper Holo-
graphic Theory, Emergent Gravity, and
Entropic Force.

Instead, we’ll strike at an even grander
prize.

Dark Energy.

Our universe is expanding increasingly

rapidly, and nobody seems quite able to
agree on why.

In lieu of an explanation, physicists have
taken to terming the effect ‘dark energy’.

Whatever dark energy is, it’s very weak.
Its energy density is so low, with a val-
ue of approximately p = 10~? natural
units, that it does basically nothing on
all but the most enormous cosmic scales.

This minuscule value of p = 1071
has been a real headache for a lot of
physicists for a long time. Straightfor-
ward calculations based on Quantum
Field Theory predict that the value
should be pretty close to one.

That’s a disagreement between theory
and measurement of /23 orders of mag-
nitude. A discrepancy that many have
termed ‘‘the biggest embarrassment in
the history of theoretical physics”.’

But, by taking cosmic acceleration to
be the result of an entropic force ... we
can solve this -- and it’s actually really
easy.

Consider, if you will, a computer
screen. The screen itself is only two di-
mensional, and yet it can display com-
plex 3D graphics with no trouble at all.

To describe something three dimen-
sional, we need only two dimensions.

This, in a nutshell, is the Holographic
Principle,and very soonit’sgoingtoallow
us to make a very important assumption.

The biggest thing that we definitely
know exists is the observable universe.
For all practical purposes, it’s a ball with

5. Ref. J Koelman and many, many others.



a radius of approximately 2.7 x 10%!
natural units.®

By the Holographic Principle, encod-
ing the information contained with-
in this ball -- the observable universe
-- should require one fewer dimen-
sions: A spherical surface of radi-
us R = 2.7 x 105 natural units. We
call this surface the cosmic horizon.

So, our assumption from the Holo-
graphic Principle is that all of the infor-
mation in the observable universe can
be encoded in N = wR? “bits’, located
on the cosmic horizon. Yes we’ve lever-
aged our natural units quite heavily here
-- but that’s the nice thing about natural
units -- we can do that!

So, now that we’ve got our N = wR?2
‘bits’ -- degrees of freedom -- located
on the cosmic horizon, we can do some-
thing truly clever.

Per the equipartition theorem, the en-
tire energy E = mec? (simply E = m in
natural units) of the observable universe
can be evenly distributed over these de-
grees of freedom located at the cosmic
horizon, with each degree of freedom

contributing an energy of %kT, where
k is Boltzmann’s constant.

This means we can associate a finite
temperature 1" with the cosmic horizon.
Here m = 1.4 x 105! is the mass of the
observable universe, so

N-ikT = E
KT = 22
= 3x10°%

Now, by applying the holographic
assumption to the definition of En-
tropic Force:

F = KTVN
= kTV (7TR2)
= 2nkTR

Now, since dark energy density and
cosmic acceleration are
by definition when using natural
units, we can compute a value for
the dark energy density predicted
by our entropic model as follows:

. 1 d?2
P = Fal

equivalent

Finally, using newton’s second law,
F = ma, we get:

A
I
;o
S 3w

= 1.3x 1071
Lo and behold.

We’ve just built a model of Dark Ener-
gy that matches observations for which
the widely accepted Quantum Field
Theory fails spectacularly.

References

1. Verlinde. (2011). On the Origin of
Gravity and the Laws of New-
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Force. University of Florida.

3. JKoelman. (2010, March 26).
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6. Natural units are a system of units achieved by setting Boltzmann’s constant, the speed of light, the gravitational constant, and the reduced Plank
constant to all be simply one. With them, we no longer need to consider most of the constants in our equations, and have far fewer unit conversion issues
to worry about than we would if we were using the metric system. Natural units can still scale linearly to metric.




The Race to Beat Einstein

By Peter Lavilles

An agitating breeze ruffles through
Einstein s notebook. It is the autumn of
1915, and he has not been able to sleep
for days. Amidst a roaring world, he
can feel his fingertips closing around
the cloth draping the universe, but time
is ticking as the world’s greatest mathe-
matician joins the race to discover the
dance of our universe's garment - Ein-
stein furrows his brow, deep in thought...

The passage of time is closely interwo-
ven with distances in space, for they are
shadows of the same whole. Time and
space are braided together into a sin-
gle 4D manifold clothing the universe
which curves, giving rise to gravity.
This spacetime garment’s behaviour can
be captured within an Equation, and the
streets of Gottingen are holding their
breath in anticipation as Albert Einstein
and David Hilbert race to find this Equa-
tion. Where could we begin to look?

It is helpful to first picture spacetime as a
large rubber sheet. A point on this sheet
represents an event, a certain place at a
moment in time, which can be described
by four numbers, (t = y z) called
coordinates. To save ink, let’s write these
numbers as x*; Greek symbols like
& mean “run through all four coordi-

9 ]

nates’.

To describe spacetime, we need the no-
tions of direction and change at a single
point. Luckily, there already exist math-
ematical objects that do this!

To examine a function in the direction
of the Y coordinate, the partial deriva-
tive Biy is used. Taking away the func-

tion and leaving just the partial deriva-
tive, we see that it is an object encoding
direction at a point. There are four such
objects, %, one for each coordinate.
Let’s draw them as little red arrows (see
Figure 1)

S,Oacet,'me

.

q

Figure 1. A 2D depiction of spacetime with tangent and
cotangent spaces at a point containing the vector v, or
v#, and covector w, or wy, (drawn on Desmos).

To compare how a function changes
overall as the t coordinate changes, the
total derivative is taken, which is the
function’s infinitesimal ratio with dt.
Treating dt as an object in its own right,
we see that it encodes change at a point.
There are four such objects, dx*, which
will be drawn as little orange arrows.

The %’s and dz#’s are like Lego
bricks; these basis elements are our fun-
damental building blocks, and at each
point in spacetime they can be put to-

gether in different combinations.

Something can be built from just the
little red arrows by first taking a cer-

tain amount of each %; the amounts,
or components, are written as v*. We
then add up the little arrows weighted
by these components to give an object
called a vector v = v# 8;2”, which looks
like a larger arrow®. Straight objects
like vectors cannot be built on a bumpy
rubber sheet, so they need a flat tray to
live in, called a tangent space (the green

plane in Figure 1).

Similarly, something can be built using
just the little orange arrows by summing
over the dz*’s weighted by components
Wy to give a dual object called a covec-
tor w = w,dz*, which again looks like
a larger arrow. Covectors need their own
flat home at the same point called a co-
tangent space.

Pairs of the little arrows can also be
combined together, for example, one red
and one orange. Each pair combination
is weighted by a component M, (up-
stairs indices for little red vector arrows
and downstairs indices for little orange
covector arrows), and summing up these
weighted combinations gives an object
called a tensor M = M} % & dx”
, which can be visualised as a 4 x 4
matrix*, Tensors live in mansions atop
the tangent and cotangent trays at each
point in spacetime.

The star of the show is ready to make
their appearance - enter the metric tensor
9uv, who plays the role of the unknown
variable in the coveted spacetime equa-
tion®. Their power is to yank a vector w*
into the cotangent space, turning it into
the covector wy, while transforming its
new components®. This power is used to

1. M isan index which runs from 0 to 3, labelling the coordinates as (:EO z! 22 133) = (t z y 2).

2. Figure 1 only shows a 2D cross-section of spacetime that has been embedded into three dimensions for visualisation purposes, since it is not easy to

intrinsically visualise four dimensional manifolds.

3. T use the convention throughout that repeated indices implicitly sum over all four coordinates.

Tensors satisfy a transformation rule ensuring that they are coordinate independent.

4

. . . L 0
5. From now on [ will name vectors, covectors, and tensors after their abstracted components, leaving out the implied Zr ’s and dz*’s.
6

The inverse metric tensor " does the opposite, turning covectors into vectors.



define the notions of length and angle,
hence capturing the geometry, or overall
shape, of spacetime.

Since length involves quantifying
change along a direction, the squared
length of a vector w# is determined by
first yanking it into the cotangent space
using 9pv and then adding up the prod-
ucts of components’, or

gupwtw’ = w,w” = || w ||2

A peculiarity of spacetime is that
squared lengths of vectors don’t have
to be positive. We see light travelling
at a speed ¢, but light sees itself travel-
ling instantaneously (speed is relative!)
since its motion (spacetime velocity
vector) has zero squared length. Any-
thing we see moving slower than c has
positive squared length and is causally
possible. If we saw something moving
faster than ¢, its motion would have
negative squared length and it would
see itself moving back in time. Thus, by
determining length, the humble 9uv de-
fines time travel!®

The angle 0 between two vectors w” and
v# is found again using 9ur’s yanking
ability, in analogy to the dot product:

g w"vH = w,vt = cosf||w|||[v]]

In our Solar System, spacetime’s ge-
ometry bends so that the planets move
freely with a constant angle relative to
their separation from the Sun. By deter-
mining angle, 9uv places the planets into
orbit.

The protagonist 9u» who controls space-
time’s geometry has been found, but we
need to know what actually pushes on

spacetime to make it curve! The antago-
nist now takes the stage, the stress-ener-
gy-momentum tensor 1, .

The latter gives the flux of energy and
momentum through spacetime. What
the heck does that even mean?? Well,
energy F is the amount of oomph ob-
jects have through time; anything with
mass contains energy. Momentum p
is the amount of oomph objects have
through space; a train hurtling toward
you contains a lot more momentum than
a train crawling past’. Think of energy
and momentum together as a fluid sub-
stance flowing like a river through spa-
cetime.

Finding flux through spacetime involves
cutting spacetime into 3D slices with
different orientations and measuring the
flow of the energy-momentum ‘fluid’
through them. If a cross section perpen-
dicular to the time direction is taken,
then “flux’ is the same thing as density,
or the amount of stuff per spatial vol-
ume. The first column of the T}, matrix
gives the density of energy and momen-
tum. The other columns of T}, measure
cross sections perpendicular to each
spatial direction, where ‘flux’ means the
rate of change per spatial area. The flux
of momentum can be further separated
into pressure (diagonal terms) and shear
stress (off-diagonal terms)!°.

In a stroke of genius, Einstein realised
that gravity is an effect from the curva-
ture of spacetime’s geometry, as caused
by T),. The protagonist Juv is joined
by their sidekicks, the Ricci tensor R,
and Ricci scalar R, who describe cur-
vature!'!.

Place two marbles on the spacetime
sheet in Figure 1 and let them roll freely
side by side. The curvature in the sheet
sometimes makes the marbles move
closer together, and this ‘attraction’ is
what we call gravity. The effect occurs
because time and space have bunched
up. To quantify this squashing, push a
pin into the peak of the hill in Figure 1
and tie a short length of string to it with
a pencil attached at the other end. Keep-
ing the string tight and trapped to the
surface, rotate it to draw a circle with the
pencil and paint its interior. This circle
contains less area (uses less paint) than a
circle of the same radius drawn on a flat
piece of paper, because the string is able
to capture more area in flat space than in
cramped ‘positively curved’ space. For
infinitesimal lengths of string, the differ-
ence in area between these two circles is
called the Gaussian curvature K.

To find the top-left R;; component of
R, cut spacetime into the three 2D
orientations that contain the ¢ direction,
and sum up the K for each of these
cross-sectional slices (Figure 1 shows
the (¢,x) cross-section). The diagonal
terms of R,, give the total K for 2D
cross sections containing the wvth di-
rection. R,,’s off-diagonal terms do a
similar thing, but measure curvature in-
teractions between different directions'?.
This effect can be entirely packaged into
a nice single number R, which is like
a 4D analogue of K. Instead of tracing
out a circle with the pencil, we trace out
an infinitesimal 3-sphere, and R gives
the difference in its 4D volume between
flat and curved space.

We are nearly at the finish line! All of
the characters for the equation have

7. This is the exact same machinery as the dot product, which first yanks a column vector into a row vector (with the same components since 9uv is the

identity matrix in flat cartesian space) then adds up the products of components, yielding the vector’s squared length.

8. ‘Forwards in time’ can be chosen to have either a positive or negative signature.

9. Energy E/cis equal to relativistic mass 7 (the object’s resistance to direction-changing forces) weighted by c. 7 s equal to Y™ weighted by the

object’s velocity.

10. The rate of change of momentum is force dd—f = F, and stress is force per area; it is called pressure if it is perpendicular, and shear stress if it is

parallel.

11. R, and R describe volume-changing curvature caused by internal T}, sources; the Weyl tensor describes shape-distorting curvature, or follow-on

tidal effects from far-away sources, hence does not appear in the equation.

12. The component R1g = R, parallel transports the basis vector % around infinitesimal parallelograms with [% as one axis, inner products (pro-

jects) its deviation onto each parallelogram’s second axis, and sums up these projection amounts.
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been found, and now they are just miss-
ing a script. We will place the source
T,,, on the right side of the Equation, so
the effect of curved spacetime geometry
involving 9w, R, and R must be on
the left side. The final leg of the race is
to guess what combination they appear
in.

To do this, the local conservation of the
energy-momentum fluid is imposed: in
small regions, energy and momentum
cannot be created or destroyed. We need
to see how the vectors making up this
fluid change over spacetime, but, since
vectors live in separate tangent spaces
at different points, we can’t just use the
partial derivatives % which are stuck
within a single tangent space. Instead,
we choose an upgraded version of the
partial derivative called the covariant
derivative V uv, which can creep around
a curved space without twisting". En-
forcing the conservation of energy-mo-
mentum simply requires that T}, has
zero divergence, or V,/TH =01
Therefore, whatever is on the left side
of the Equation also requires zero di-
vergence for consistency. Here a bit of
maths comes in handy. Curvature satis-
fies certain properties, one of which is
the Second Bianchi Identity. By plod-
ding through some manipulations, it can
be used to show that the specific com-
bination R, — %Rg,w has zero diver-
gence. The non-twisting V. we chose
also tells us that guv has zero diver-
gence, so a constant multiple of it can
be added to the left side. Finally, putting
the left and right sides together, we find

R — %Rguv + Aguy = KT (1)

After an exotic journey, we have dis-
covered the final spacetime equation!

Within its ciphers lies a thrilling drama.
The free motion of objects is guided by
the geometry of spacetime gu» and yet
the distribution of the universe’s objects
T, pushes on guv to make it curve in
the form of R, setting up an end-
less conversation between the universe
and its constituents. In the words of
Wheeler, “Spacetime tells matter how
to move; matter tells spacetime how to
curve.”’’ K is a constant (a certain num-
ber) that controls how sensitive space-
time is to curving. R, and R are ex-
pressible in terms of g, and each index
runs through four coordinates, so equa-
tion (1) actually describes ten equations
in the unknown components of guv. !¢

A is a number called the cosmological
constant, which tells its own remarkable
story. If A is positive and it is placed on
the right side of the equation, it acts as
a source of constant positive energy in
the vacuum of space with negative pres-
sure'’. Tt was recently discovered that
some unknown energy source called
dark energy is driving an accelerated
expansion of the universe, and A may
well be this mystery energy.

The equations have been found, but who
won the race? Hilbert presented an alter-
native formulation of the equations via
an action-minimising principle five days
before Einstein, but Einstein, the orig-
inator of the whole program, was the
first to publish the equations as present-
ed here (initially without the A term).!®
In honour of the physicist who founded
the revolutionary theory of gravitation-
al spacetime, or general relativity, these
ten equations are known as the Einstein
Field Equations.

A sudden idea flashes up and Einstein's
mind starts racing. Could it work? He
grabs his pen and starts writing symbols
in his notebook, scribbling through lines
of maths, and... it works. He is already
running out the door, rushing to the
Prussian Academy of Sciences to pres-
ent his final equations that shatter the
old paradigm of gravity. When Newton s
apple fell from a tree, it was being guid-
ed by a garment of time and space that
ripples and curves in an endless cosmic
dance.
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Vacuum Decay: A Simple Blueprint for

Cosmic Doom
By Caleb Clark

The end of the universe. It’s something humans from all
civilisations have pondered. From ancient speculation to
modern theories of the Big Crunch or Heat Death of the
cosmos on a massive cosmological scale. But what if there
were a mechanism for our demise baked into fundamental
quantum physics, capable of obliterating us in an instant;
and what if I told you that this same mechanism is key for
the foundational stages of the Big Bang? What if [ told you
it also lends a hand to modern developments in a variety of
technologies? And best of all, that we can wrap our minds
around the core idea of this process through a journey that
takes us through the (post-Newton) language modern physics
is written in, and alongside one of Feynman’s boldest ideas?
I’d say you’d be about as stoked as Peter Higgs in 2012 -
maybe even more, since you don’t need a billion-dollar
collider to read this article. Introducing — a classical model
for false vacuum decay.

Equipping our toolset

Let’s get concrete. The Higgs field, which critically
underpins the fundamental physics of our universe, can align
into a shape that resembles one of Fig 1 (the symmetric
double well) or Fig 2 (the asymmetric double well).
In fact, this alignmnent is what breaks the electroweak
symmetry in the early universe, giving W /Z bosons their
mass. The question of which double well is at the moment
not fully resolved, but luckily both problems are reasonably
tractable, especially with a simpler approach: instead of
considering the 3-dimensional field ¢(z, y, z,t) as a function
of position, we will simply by analogy consider a single
function of time z(¢).

—d a
Figurel: Symmetric double well as described by Eq.1, & = 0

We could write a simple model for this well’s potential as

Va (a:) = )\(a:2 — a2) (:c2 — a2)2 +ex (1)

where = could be the position of a quantum particle, or the
value of a field; @ > 0 is the well’s width and A > 0 its height,
and € > 0 a small parameter characterising a shift from the
symmetric well towards asymmetry. For the symmetric double
well, we’ll address the case € = 0, and for the asymmetric
well we will lift it to € > 0. Each minimum of the well is
a state a particle could be in; for instance the Higgs field’s
current minimum determines its non-zero vacuum expectation
value of (¢) ~ 246 GeV, which in turn gives it the ability to
imbue certain particles with their mass.

/ X

>~ a

Figure 2: Asymmetric double well as described by Eq.1, & > 0

Now that we have our potential, we want to ask the question:
what is the probability that a particle (or field) could
transition from one state to the other? This question carries
a great significance, for if the Higgs field exists in a ‘false
vacuum’ state (i.e. a state that looks stable locally but is not
the global minimum of potential, which would be the ‘true
vacuum’) like that of the asymmetric well, there may be a
probability of it tunnelling to the lower energy state. This
would rapidly expand a ‘true vacuum bubble’ in all directions,
kicking all Higgs fields into the global minimum and activating
radically different laws of physics wherever it touches. The
subsequent decay that ensues would be ‘the ultimate ecological
catastrophe’[2], releasing vast amounts of energy, and possibly
increasing entropy significantly. The fundamental laws that
currently allow our atoms, our cells, and those of stars to be
stable would be completely rewritten, and we may dissolve
into mere quarks and electrons, or even just pure energy.
The double well potential here actually goes far beyond
genuinely permitted but sci-fi-sounding armageddon scenarios.
It can also be used in quantum gates, information processing,
the generalised Josephson effect, or even as recently as 2024,
when a genuine vacuum decay of a particular order parameter
was observed in ferromagnetic superfluids [3].

To make our question more precise, we will wvisit
the Lagrangian formalism of classical —mechanics.
Remember Newton’s force law F' = ma, the foundation for
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essentially any problem in first-year mechanics involving
predicting motion of objects. Now, remember how sometimes
it was easier to analyse a problem with respect to energy
conservation? The more sophisticated version of this is
something called the Lagrangian, and for our purposes it is
equivalent to kinetic energy T minus potential V'

ZL=T-V

From this, like how Newton’s law would give us a differential
equation of motion in terms of x via % = ¢, we also extract
an equation of motion from the Lagrangian by minimising

‘action’ (described soon):
d 0% _ 0% 9
dt §r Oz
and for our potential, this gives
i= V(). (3)
Again, this is just a more sophisticated version of F' = ma,

and indeed here it reduces to that case if you plug in the right
variables.

Now, if you were to imagine a ball in a ‘valley’ outlined by Fig
1 or 2, initially sitting still, there is no classical chance it could
roll from one minimum to another. But we know about quantum
tunnelling, where particles of energy E can surmount the odds
and cross through a barrier of energy > FE. There is in fact an
easy fix to implement this tunnelling into our theory, but it may
shatter your currently established conceptions of space-time.
The trick is to \emph{rotate time to become imaginary}
(called ‘Euclidean time’):

t— it =r.

If we accept this bit of ‘magic’, and twist our derivatives to
incorporate T, we see in & that the relative sign of the kinetic
to potential energy flips; equivalently, we could imagine the
potential of Fig 1 to be upside down, as in Fig 1. Now it’s
perfectly intuitive to imagine a ball rolling down from the top
of the hill, picking up some speed, and then coming to a stop
at the top of the other hill, i.e. our old minima!!

P

A2

Figure 3: Asymmetric double well as described by Eq. 1, with the same parameters from 2,

viewed in Euclidean time, resulting in a flipped potential.

Now for the so-called ‘action’. An analogy helps: think of a
particle as a submarine, and the Lagrangian as ‘amount of fuel
used per second’. The pilot of this submarine will of course
take the allowed path which minimises the total amount of
fuel used, even if there might be many other paths which
use more fuel. This total amount of fuel used per path is the
‘action’. We can define it mathematically as:

(4)

Sk (path) = fpath dr ¥z

where the subscript E here stands for the fact that we are
working in Euclidean (‘imaginary’) time. Finding the path
which minimises® this action is directly what gives the
equations of motion from before!

Now our final tool needed is the ‘Feynman propagator’ Kg
. Here we throw out the classical notion of a particle only
taking one given path, and embrace the quantum notion first
introduced by Feynman: particles simultaneously take an
infinite number of different paths. It’s hard to imagine for our
submarine, but that’s because we have monkey throw rock
brains, not photon travel through slit brains. (Yes, the double
slit experiment for particles can be explained by this notion
too!)

.. The propagator then represents a transition amplitude from a
point z; to a point Z2. In Euclidean time, it can be calculated

(5

Here we are integrating over all possible paths with the fancy
Dz; and the 52 factor can be interpreted as a probability
for each path. This actually explains, from a quantum
perspective, why we minimise action to obtain our classical
paths: we are taking the quantum — classical limit 5 — @, and
the only path that survives is that with the lowest action Sg.
Importantly, the physical interpretation of this propagator is
that its square-modulus |Kga,—z,|" gives the probability of
transition.

Sg(z)

KE,J?Q(—’.’Bl = f@xe_ h

So we have reduced our question from the vague “how do
we calculate transition probability between minima” into the
more computationally tractable “let’s perform an integral
over all paths to get the Feynman propagator, using Euclidean
time”. Let’s give it a shot!

Symmetry comes first

Firstly, there is some analogy to the classical approach
which finds only a single path between two points. The way

1. And don’t worry too much about any physical interpretations of this ‘imaginary time’ - we can just think of it as an equivalent, but much easier com-

putational path to our transition probability.

2. Technically, extremises, since are just asking for the first derivative to be 0.



to think about our approach here, is that we will find a sin-
gle, classical, ‘most probable’ path (in Euclidean time),
then account for all possible deviations from that path weight-
ed by probability, to give an approximate answer from the rest
of the propagator machinery. We will do this first for the sym-
metric well, and then for the double well.

The most probable path is ironically the exact solution a clas-
sical particle living in Euclidean time would take. By solving
the equation of motion, to get an absolute minima for the ac-
tion, we meet the final character of this story: the instanton.
This is a kink between the two minima (or maxima in Eu-
clidean time) of the potential well, following the shape of a
hyperbolic tangent curve:

(6)

Tl (’7‘) = atanh (a\/ﬁT) .

—a

Figure 4: An instanton, described in Eq. 6, moving from -a to a in Euclidean time.

We can calculate the action, and thus the propagator, straight-
forwardly for this solution, obtaining an action

Sa = 2a3\/ %

Now we can modify the action of a single instanton to incor-
porate all possible paths (from one minimum to another) in
two main ways.

First, once the particle has followed an instanton (I) and estab-
lished its position at one minima, after a sufficient amount of
time, it could follow an ‘anti-instanton’ (A1) back to the first
minima. And keep doing this, over and over. Each different
arrangements A path with [ — Ai — I — Ai — [ is less likely
than a simple I, or a I — Ai — I path with less Ai — I pairs;
but since we are integrating over all possible such paths, we
must still include these.

Second, the particle could wiggle a bit along the way to
another minima, deviating from the standard instanton
curve. To incorporate this we introduce a deviation term
Y in our new path x(7) = za(7) + y(7), and then inte-
grate over all such Y. I won’t get into the details of this or
any other spicy integration that happens here, but there’s
a pretty nifty infinite-dimensional generalisation of the
Gaussian integral to calculate the final propagator here.
As well as this, the fact that we are allowed to expand about
our Zcl in the first place is essentially the result of the steep-

13

est-descent approximation to an integral
f d €re -M g (il:)

containing a local minima of g(z) with M > 1.

Our final result for the symmetric well then ends up with the
following form:

_5a
K oo~ Ae (8)

where to simplify, this A is a constant which absorbs any of
the other quantum fluctuations emerging from the above dis-
cussion. This form will be of great help to us in the next sec-
tion as we tackle the asymmetric well.

Tackling asymmetry head-on

Now when we consider the case € > 0 in our poten-
tial from earlier, we find that the minima on the left tilts
to a lower potential. Furthermore, both minima shift
left from 4q by gz, so our path must be different.
Since this deviation € is assumed to be small, we can assume
our new ‘classical’ path zaa(7) is only a small deviation
away from the instanton path,

zaa(T) = za(r) + efe(7) (9)

where we characterise the asymmetric (A) deviation through
the function fs. Substituting this ansatz into the equation of
motion Eq. 3, and neglecting high order terms like f2, we
obtain a new differential equation to solve for f. (with over-

dots being 2):
(10)

f=4x (3wd2 (7') — az)f +e.

It turns out to be too difficult to extract any direct solutions
from this. Instead, we borrow the classic physics trick of ap-
proximate-and-hope-it-works. We analyse separate asymp-
totic regions: t — +oo and ¢t — 0. Imposing the boundary
conditions that our particle does eventually reach the minima
despite any deviation along the way, and using a third order
power series for the ¢ ~ 0 region (the most informative ap-
proximation that could be made easily solvable), we obtain
three distinct solutions. We can glue these together by setting
the boundaries between the regions as 7 = iﬁ (the same as
the instanton width), and enforcing that f. is continuous and
differentiable at these boundaries; the result is seen in Figure
5.

Armed with this classical path we can now move onto cal-
culating the Euclidean action, and then shortly after the tran-
sition probability, using the K ~ Ae*% approximation of
earlier.
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PIot of fi(£), fi(t), and fiu(t)
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Figure 5: Graph of f(T) for all regions simultaneously, showing continuous differentiability at

region boundaries = 4§ as well as throughout.

Findings of questionable accuracy

However what we can do, which is much more instructive, is
to graph the results we get, as a function of €, and in particu-
lar the ratio of our new calculated propagators K p* (where
+ stands for transitions to the minimum with larger potential
energy, and — toward the lower potential energy) against the
symmetric K. In these graphs (3 is the amount of time we
wait for the transition to occur; i.e. if 8 has elapsed and still
no transition, we pack up and leave, not waiting for any more.
All other variables A, a, A are set to 1.

On the whole we see some expected trends, and some un-
expected. In Figure 6 as expected, these ratios approximately
coincide for ¢ ~~ (; and one grows while the other shrinks, re-
flecting the transition probabilities spreading apart as the min-
ima do. However, the graphs have got the order ‘the wrong
way around’, and imply the transition to lower energy is less
likely than a transition to higher energy!

Here’s an even weirder graph (Figure 7). If we increase the
time window to 10, then almost everything looks wrong: the
ratios hoth grow above 1, and then both drop to O for higher €
. So a transition becomes almost impossible if the energy dif-
ference is too negative? What? Additionally, tunnelling should
surely be more probable, not less, if we have given more time
for the particles to move.

Plot of K /Ke and KZ /Kg against e for =1
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Figure 6: Ratios of propagators to € = 0 case plotted on a linear scale against € for 3 = 1

Plot of K¢ /Ke and K /Ke against € for =10
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Figure 7: Ratios of propagators to € = ( case plotted on a linear scale against & for 8 = 10

So we perhaps followed through on some promising alge-
bra, but when all was calculated and done, we have some
blatantly unphysical results. It is therefore blindingly obvious
some error in calculation has occurred, whether it be in the
various approximations made, particularly that of assuming
Eq. 8 would hold for the asymmetric case, or just in one of
the endless pages of algebra. At best it is a lesson that not
everything works out as expected the first time in science,
that throwing approximations haphazardly at a calculation
won’t necessarily yield a stable result, and that evaluating a
result is always a crucial check; at worst a message to me to
return to kindergarten and start my education from scratch.

But let this not extinguish the flame of wonder within your
heart for scientific progress. You now have some powerful
tools for tapping into the quantum and classical world alike.
And how remarkable that these allow us to analyse the fate of
the entire universe! The calculations herein may be inaccurate,
but still they give us a glimpse into possibilities of cosmic
significance: that the Higgs field of the vacuum itself could
destabilise and unravel physics as we know it, and with this,
reality itself. A simple jump between two local minima could
result in the entire universe being destroyed in an instant.

So perhaps you feel implored to carry the torch forward
and re-think these calculations, or perhaps to explore some
new universal consequences of quantum effects entirely; the
choice is yours. But I hope you leave here with this new un-
derstanding: with science we venture close to understanding
the deep fabric of reality, and the most profound questions
that still elude the human race - questions that could, in the
end, determine if our universe is permitted to continue at all.

PS: You may be reassured to hear that using a full, field-the-
oretic model, but still no shortage of assumptions, that the
probability of this universe-ending decay was found to be ex-
ponentially suppressed (very small); though some uncertainty
does certainly remain! [1].
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And that is a wrap for another issue of The Physics Society’s home-
grown magazine, Jeremy! Whether it was from questioning the es-
sence of thermodynamics, to understanding the fabric of spacetime
a little more, or even finding interest in cosmic doom, we hope that
you enjoyed this read!

Join us soon for another fascinating issue later during the semester!

And don’t forget to follow our socials on Instagram and the PhySoc
website.

Also do not hesitate to contact us via
jeremy.physoc@gmail.com for ideas, article submissions, or an-

ything else.

Catch you later everyone!
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Guess the rebus!

Geocaching Puzzle

(Clue: Famous Physicist)

Make sure to follow
the Puzzle Society,
who kindly gave us
puzzles for this sec-
tion

The University of Sydney is home to a lovely courtyard, nestled between the new Sydney Nanoscience Hub (opened in
2016) and the Physics building (opened a little less than a century ago in 1926). Here, you are welcome to use the shaded

benches and tables to enjoy some much-needed outdoor time.

Clue: Follow the commute of the setting sun. No ladders (or spaceships) needed. (Bonus: send us a photo of your completed
geocache for limited edition Jeremy merch!)
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Work where your

mind matters.
Apply to Jane Street today!
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Celebrating 41 Years of Culinary Excellence and

(02)9516 4510 www.charlesthai.com

fentic Thai Street Food in
your neighbourhood

Perfect Brews

n, At Ralph's Catering, our mission is to delight our ) 2 l l
\ clients with cutstanding food and exceptional - <

service. We believe that every event, big or

small, deserves to be special, and we are
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Est. 1984
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CELEBRATING 41 YEARS

) ralphscatering.com.au

beccaeralphscatering.com.au
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