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Welcome to Jeremy!
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“Oh, Jerry, don't let's ask for the moon. We have the stars.”

As semester begins and the air dings with the buzz of friends
long-awaited, as people are met and lecture halls fill with the
sound of learning and excitement, have a look around yourself.
The lake in Victoria Park ripples and swirls, the Clock-tower
bells chime from metal on metal, the Quadrangle spires point
up to stars shining through clouds and city lights, and if in
the midst of it all you find yourself asking ‘why does this hap-
pen?’, then you are doing physics. Physics is for everyone, for
we have all glimpsed from time to time a childlike curiosity of
the wondrous world we live in. Whether you are a seasoned
physicist or someone who hyperventilates more than an asth-
matic hamster from the first whiff of a maths equation, Jeremy
is here for you. As you thumb through this magazine you are
an explorer, an adventurer of new landscapes that anyone can
walk, and who knows what discoveries await?

100 Years of the Physics Building

By MIKAELA CHEN

These are some of the stories these corridors, laboratories,

stairways, and lecture halls have to tell.

Phuysics building during construction 1923-1925 and Physics build-
ing today. Photograph provided by Tim Bedding.

In 1923, work had just bequn on the new Physics building,
which the Sydney Morning Herald described as “what will be
the finest School of Physics in Australia, and, perhaps, in the
Southern Hemisphere”.! Two years later, in March 1925, the
then small Department of Physics officially moved into the
newly built Physics building, sharing it with the Department
of Mathematics and the Cancer Research Project. The outside
of the building commemorates the year 1924, which is why

we are celebrating the 100th anniversary this year.

So now a (quasi) century since the beginning of the Physics
building, Jeremy looks back at its history with the help of
Professor Robert (Bob) Hewitt — affiliated with the School
of Physics since his student days in the 1960s and who has
held many staff roles since, and some thorough scouring of the
University of Sydney online archives.

Back to the beginning

Symmetrical, squat, and cream-washed, the Physics building
was designed by the University’s first architecture professor
Leslie Wilkinson, the mastermind behind the University's mas-
terplan. The Physics building constituted part of this plan,
designed to have “axes and open attractive views from many
points”, according to Wilkinson.? Before Wilkinson's new de-
sign, the tiny physics department had been teaching in part

of what is now Badham building.

'Sydney Morning Herald, 5 April 1924, pp18. “Physics School. New building. Finest in Southern Hemisphere".

2University of Sydney Physics Building brochure for Open Day 1984.



Air raid trenches being dug in front of the Physics building. 1940s.
REF-00050156

The first alteration to the new Physics building came with
WWII, which left almost nothing unchanged in Australia. The
basement was enlisted to build and refurbish optical equip-
ment for the military. The rest of the building trained officers
for radar stations set up for the war. Meanwhile, the hockey
field on the Physics building’s front steps was carved out with
air raid trenches.

Big projects and their legacies

After WWII,

venate physics because it was the flavour of the month with

“the University of Sydney was desperate to reju-

the bomb and all the developments during the Second World
War,” said Robert Hewitt.

Rejuvenation came in the form of Professor Harry Messel.
Just 30 years old and with a glowing reference from Erwin
Schrédinger, Messel was appointed Head of Physics in 1952.
It was the beginning of his influential and passionate 35-year
tenure.? Very soon eleven new academic staff were appointed
to add to the existing four, and the Physic building itself

received some renovations it direly needed.

In 1954, Messel procured a donation from Sir Adolph Basser
to build SILLIAC, the Sydney version of the Illinois Automatic
Computer. SILLIAC was born from ILLIAC, the University of
Illinois's computer and the fastest in the world outside of the
military at the time. It was the second computer built in Aus-
tralia and a powerful, exciting one for its time.

“The idea was that Sydney would build [SILLIAC] and if they

made any improvements to the design, they would pass them
on back to ILLIAC and vice versa,” Robert said.

“It was a very important machine. It trained all of the people
It did all the
engineering calculations for the Snowy Mountains scheme.

who were significant in Australian computing.

It worked out where to put all the telephone exchanges in
Australia.”

SILLIAC was significant for its time, even if its capabilities
don’t hold up today.

“SILLIAC had a memory of one kilobyte. It had 48 little cath-
ode ray tubes which were about 30 centimetres long with a
diameter of about 10 centimetres. Each of those cathode ray
tubes had 1024 dots which could be on or off. The 48 tubes
were the 48 bits of the word. So it had 1024 48-bit words.
And it had about 4000 valves.
machine.”

But it was quite a reliable

Front view of SILLIAC. REF-00014271

Around the same time, Messel also established the Nuclear
Research Foundation (now the Physics Foundation), the first
of its kind in Australia. The Foundation had many uses, but
one of them was creating the International Science School
(ISS), a program that brings together talented high school
students from across the world for two weeks every two years.
The students receive lectures from world-renowned scientists
and tour research facilities with all expenses covered.

The very first ISS for senior high school students was in 1962

(it was trialled with high school teachers for a few years before

3https://www.sgdneg.edu.au/science/schools/school—of—phgsics/harrg—messe[.html



that), with guest lectures given by Hermann Bondi, Ronald
Bracewell, and the controversial Wernher von Braun. 108
boys and 45 girls attended, all of them Australian except for
one student from New Zealand.? The International Science
School continues strong today and the next one is due in
2025. It is now truly international, with students coming from
Britain, Canada, China, India, Japan, Malaysia, Thailand and
the USA. The gender divide has also evened out to roughly
equal male and female students most years.

Wernher von Braun giving a lecture at ISS 1962. Photograph pro-
vided by Tim Bedding.

Being a Physics student in the 1960s

In the meantime, the student population studying physics
continued to rise. The increase had started post-WWII, when
returning servicemen were offered free university education,
and continued in the following decades. Robert remembers
his own time as a physics student at USyd in the 60s.

“I came in 1961 as a first year student. My first lecture was
in the lecture theatre that no longer exists, one down on the
ground floor where the big glass windows are. That was
physics lecture theatre three, and Harry Messel gave me my

lecture in there.”

“It was quite a spectacle because he had on the front bench
a metal tray with a glass of water, and on the board were all
of the pictures for the lecture already drawn in chalk. Then
precisely at five past the hour he walked in and they locked
the doors and he started talking and gave his lecture. He had
one of the senior staff doing the lecture demonstrations for
him. And then at precisely five minutes to the hour they un-
locked the doors. We never saw anything like that anywhere
else in the university.”

Soon the science student population had gotten so large it
became difficult to fit everyone into the lecture rooms. This

was probably why in 1968, the School of Physics began to
give first-years recorded lectures through black and white
TVs hung from the rafters in Carslaw. Only distinction level
students had live lectures in PLT 8 in the Physics Building
(the Slade Theatre today). Unsurprisingly and as we who
have made it through Covid-induced online learning would
understand, these televised lectures were not popular with
the students. They didn't last long, though they did cause a
temporary decline in Physics enrolments.

Carslaw TV lecture circa late 1960s-early 1970s. Photograph pro-
vided by Robert Hewitt.

Not only were the lectures different from today, the labs were
too.

“The physics syllabus in those days was very different. All of
the equipment you used essentially had to be built by you or
gotten second hand from somewhere else. When they closed
the tram network, for example, they had a lot of the devices
that the driver would use to control the speed of the tram,
and they were just variable resistors. So when the trams all
closed down the University managed to get those as scrap.
When | was a youngster, when we went to buy shoes, you
would stand in the little x-ray machine and look down and
see whether your foot fitted nicely into the shoe. But these
were giving you massive doses of radiation and so they were
banned. So the University got all of those. All the equipment
was basically stuff that had been scrounged or had been built
with cheap components. | didn't see a cathode ray oscillo-
scope, for example, until | got to third year.

4ISS Archives from https://www.sydney.edu.au/science/industry-and-community/community-engagement/international-science-school.html



1960 Physics 1 Laboratory. Photograph provided by Robert Hewitt.

Closing thoughts

In more recent years, the Physics building has gained a shin-
ing new neighbour, the Sydney Nanoscience Hub. It boasts
more than 25 laboratories and the ability to tightly con-
trol those environments with state-of-the-art technologies.
Where the Physics building held Australia’s best computers of
yesterday, scientists in the Nanoscience Hub are researching
tomorrow’s quantum computers, among many other exciting

projects.

So next time you cross the hockey field to get to the Physics
Building, maybe you'll feel the ghost of air raid trenches un-
derfoot. Push open the front doors and look up. Framing the
edge of the vestibule ceiling are names of individual promi-
nent scientists, most of whom were still living when the build-
ing was in construction in 1924 (except for Hertz who died in
1894). All of them have now passed away, and it is a reminder
of how many years this building has seen. It's a cliché, but if
these walls could talk, they would have so much to say. So in
commemoration of the Physics building's 100th birthday, take
some time to walk around these corridors, listen to the walls
talk, and see what bits of history you can find.

5https://www.sgdn.’eg.edu.au/nano/a bout/facilities/sydney-nanoscience-hub.html

Sphere Collision Part Il: Breaking
the Waves

By MURRAY JONES (THE GUY WITH THE HAT)

* Part | can be found on our website
usydphysoc.org.au

Someone shouts ‘wave!’ and the physicists reach for their

sinusoids.

It's almost instinct at this point. All through high school, and
now throughout our uni degrees, we've all been told that that
squiggly line right there, that sinusoid, is more or less the
definition of a wave.

Dig a bit deeper, and you might unearth some equations to go
with it — perhaps the Wave Equation, perhaps Schrodinger’s
Equation.
2 2
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Now, these may look like some very grandiose creations out
of the depths of calculus — and indeed they are! These are
two of the most powerful equations that physics has to offer.
Between them they can model everything from ripples on a
pond to radioactive decay, but look a bit closer, and you'll
realise they're actually both not much more than a couple of
sinusoids in a trench coat.

Now, that's all well and good for ripples on a pond ...




But ponds aren’t the full story. The physicist's humble sinu-
soid is only a low energy approximation of a wave. We can
do better.

What actually creates a wave?

The usual physics answer would be to say waves are a mathe-
matical construct spat out from the geometry of a circle — but
today we're looking for something a little less approximate
than that. We could instead say that waves come from the
interaction between wind and current at the surface of the
ocean — but that would be swinging too far in the other direc-
tion. We're still physicists. We like a nice general explanation.

So, we need a middle-ground:
“Waves are a property of springs.”

If you've ever played with a slinky, this won't seem like too

strange a concept. Let's start easy and conjure ourselves a

0\.

Nothing fancy here. Just two spheres connected by an ideal

spring:

spring. How about we make things a bit more exciting and

give them some friends:

LS80 880 8538850080085 08888088088

Above: A row of spheres connected by springs. The black spheres
are constrained to only move vertically, to prevent the springs
from collapsing whole arrangement into a tiny little puddle.

Now let’s give one of those spheres a bit of a kick. If we kick
it vertically, we can get ourselves a transverse wave, if we kick
it horizontally, we can get a longitudinal wave.

Left: A longitudinal (left

and right) wave, such as
sound.

T

Yada yada nothing new there. Nothing we couldn’t make by

Right: A transverse (up
and down) wave, such as
a ripple in a pond.

stacking up a whole bunch of sinusoids in a Fourier Series, if
we so desired. Let's up the anti and hit our spring with both
of those at once: A transverse wave, and a longitudinal wave,

on top of each other.

Sorry Mr. Fourier, but that right there is a wave behaviour
that no amount of wiggly little sinusoids can model! Now
how about we cough up some concave spring collision logic
and send two of these waves at each other, from opposite di-

rections:

Have you ever dropped a drop of water into a pond, watched
the ripples that form, and wondered...

‘what would happen if | made the ripples first, and
sent them inward? Could they combine with each
other to splash up a drop?”’

Doesn’t matter if you haven't wondered that. You're wonder-
ing it now! Point being: The answer is YES, and that'’s exactly
what we just saw happen in our wave on a spring! Now, ad-
mittedly, that droplet we just formed wasn’t a very exciting
one. Currently our springs can only attract spheres, never re-
pel them, so any droplet bigger than three spheres will almost
immediately break up into smaller ones. We could fix this by
manually introducing a concept of ‘pressure’, to force enclosed
loops of springs to keep their volume constant, but that'd give
our system yet another parameter; so instead we’ll slightly
change the geometry of our setup to deter sharp kinks in our
spring:

Left: Red springs have nominal length x, orange springs
have nominal length 2x. Thus, the repulsion from the

@ orange springs will cause the system to remain a close to

straight as possible.

Right. Let’s launch our two waves at each other again, this

time our new spring geometry:

i g s
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Now we've got two waves that collide to form a nice stable
droplet. Yeehaw!

If we add some convex spring collision logic and an acceler-
ation toward the centre line (the line between the two black
dots), we can get a droplet that bounces almost indefinitely,

resonating on the surface of our spring.

o T et Mo snenng, pos
W

For our original 1D spring, | manually created the longitudi-
nal wave, by setting a horizontal starting velocity to some of
the spheres. This made the whole effect bigger and easier to
see on the plots, but even if | hadn’t done that — even if I'd
started with a purely transverse (up and down) wave, there
would still have been longitudinal (left and right) movement.
This is easier to see if we add a dimension:
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Here, | simply picked a single sphere, and give it a honking
massive kick directly upward, right at the start of the simula-
tion. Even though there was no longitudinal motion to begin
with, we still see a stretching in the springs before they start

moving upward.
e The upward motion stretches the springs.

e The stretched springs retract, pulling spheres closer to-
gether.

e The momentum of the spheres compresses the springs

as the spheres bunch together.

e This in turn causes upward motion, as the springs ex-

pand forcing spheres out of the plane.

So we have a kind of wave with two components. One compo-
nent of the wave creates the other component, and vice versa,

and when two such waves collide, we can form particles.

Does that sound like something familiar?

Electric

Field

F————_Wawvslgngy,
i Direction

Correct answer: No. No it doesn't...

Those of you who know a tad about physics are probably
grasping in the general direction of Maxwell's theory of Elec-
tromagnetic Waves right about now and thinking ‘Wait what?

You've been working up to this for the whole article!?".

Well my friends, the realm of physics is a deep one, and there's
a lot to be learnt. Including that Jeremy has plot-twists! For
the folk that have been sitting comfortably on a Plank Theory
sofa for the last four pages: Touché. This waves-on-springs
model is lovely. At least, | think it is. However, as my stats
lecturer once said:

‘All models are wrong, but some are useful.”

This model is a way to remove our reliance on the indestruc-
tible box we had in Part /, and for that it works pretty well.
With our sphere bouncing an a lattice of springs, we could
model everything from the double slit experiment to the pho-
toelectric effect.

However, as the Plank sofa sitters are itching to point out, we

could never match the Plank-Einstein relation.
E=hf

Our model looks beautiful from a distance, but no matter how
hard we try, this simulation of a sphere on a lattice of springs
will never match the energies of real particles, measured in
experiment. For that, we’ll have to dive deeper. We'll add
dimensions like guacamole to nachos as we delve head-first
into the world first unveiled by Louis de Broglie, in Part /Il of
Sphere Collision.




What are Numbers?

By PETER LAVILLES

“Out of an infinity of designs a mathematician
chooses one pattern for beauty’s sake and pulls
it down to earth.”

- Marston Morse

The winds howl, waves crash onto the boat. Against the sil-
houette of night a figure is seen, teetering dangerously over
the boat’s edge as members of the Pythagorean cult surround
him. Suddenly he is grabbed, lifted high, and thrown over-
board. For he was a rebel, someone who divulged a terrible
secret that was never meant to be known. He had discovered
that irrational numbers exist.

What are numbers, and how do we know they exist? The
Pythagoreans were certainly convinced that they are real
entities, enough to drown someone over. Numbers are also
the foundation of physics, the study of the universe. If we are
to say that quarks and electrons exist, then we must say that
the numbers which define these elementary particles in their
truest mathematical form also exist.®

Surprisingly, most of the numbers that we have encountered
boil down to a very simple object: they are nothing more than
structured points on the surface of a sphere.” Humans need
a way of making this sphere tangible and have constructed a
very efficient method for arriving at all of its points; the way
individual numbers appear is the outcome of a human codifica-
tion of this abstract spherical structure. A solid construction

is necessary, however, so how do we go about doing it?

We can’t begin from nowhere, so we start with an assumption
that cannot be proven (an axiom): there exists a number 0.
Remarkably, 0 is the only number we need to assume exists.
Every other point on the sphere can be reached by assuming
the existence of operations, ways of reaching new numbers

given old ones. 0 is our foundation, our base point from which

we can launch into a conquest of the numbers.

The first operation we assume is counting. To see what this
is let us visualise our intermediate goal, a circle (once this
circle is constructed, we can revolve it in space to get our fi-
nal sphere). The operation of counting says that we can push
the number 0 a discrete step away to form a new number, then
another step away, and so on without ever stopping. This gen-
erates an endless supply of so-called natural numbers, which
appear arbitrarily cramped the closer we get to the north pole.
Counting can be thought of as a kind of warped, non-uniform
rotation around the circle, where each natural number hops
over to the one closest. The number 2’ is code for ‘rotate our
base point O twice around the circle’.

The natural numbers (counting).

The next operation we assume is negative counting. This is
exactly the same process as before except that we reverse the
direction; non-uniform rotations are now clockwise instead of
anti-clockwise. This kind of inverse operation can be seen as
an expression of symmetry. Placing a vertical mirror inside
our circle we see that every natural number has a unique re-
flection, its very own shadow partner, with the exception of 0.

It is so empty that it is its own reflection.

Vertical symmetry (negative counting).

Now we introduce a seemingly innocent operation, which im-

bues the natural numbers with a profound structure. This is

bWe believe electrons exist since they cause light which we can perceive, even though we can never perceive an electron in and of itself. Numbers exist
in the same way in that they cause the electron which causes the light, despite an inability to perceive numbers without the help of symbolic codifications or

constructions.

"This statement comes with two big caveats. Firstly, | am only considering the most basic system of numbers used in physics, the (extended) field of complex
numbers. There exists a rich landscape of numbers which are not as fundamental to physics, including the p-adic numbers, quaternions, surreal numbers, etc.
Secondly, | am only considering the simplest spherical manifestation of this ‘abstract object’. There exist topologically different versions of this object (called

Riemann surfaces), like tori.



the operation of multiplication, counting with a change in unit.
If we write an expression like 3 x 2 (three lots of two), what
we have done is make our base point 0 hop around the circle
three times, but each hop is worth double; counting is just a
special case of multiplication with a normal unit. This new
operation doesn’t immediately generate any new numbers, but
it tells us something fascinating: every natural number can be
broken up into atoms called prime numbers. These atoms are
unbreakable entities, like 2,3,5,7,11.
number is a molecule that can be reached with a unit change,

Every other natural

like 4 which can be broken down into 2 x 2. We also see
that O is special in that it sucks in numbers like a black hole;
once a number is multiplied with 0 it is stuck there, you can't

multiply your way out of 0 again.

So far, we have constructed the natural numbers, we have
made them separable into atoms, and we have given them re-
flective partners. Now we create a new symmetry by placing a
horizontal mirror inside our circle, which is achieved through
the operation of division. This gives every number a new kind
of upside-down partner, an inversion of itself. This symmetry
is balanced around the number 1, which is so slim that flip-
ping it upside-down leaves it looking identical. Division is the
opposite of multiplication; instead of doubling or tripling our
unit of counting, we are now splitting up our unit into smaller
pieces. Since there is an endless supply of natural numbers,
we now have an endless supply of increasingly smaller units.
Zeno is quaking in his shoes as his hare's strides become
shorter and shorter, apparently unable to catch up with the
tortoise.

Horizontal symmetry (division), and the first new fraction 3/2.

We are now going to perform a feat which leads to an explo-
sive generation of numbers on the circle. We are going to
allow multiplication between our original naturals and these
new smaller units. For example, what is three lots of half

units? It has to be greater than two lots of halves, which is

1 (since 2 and 1/2 are inversions), and it has to be less than
four lots of halves, which is 2 (since 4 breaks up into 2 x 2).
We have made a discovery, a number called 3/2 lying in the
cracks between 1 and 2. Our stockpile of small units lets us
repeat this procedure, finding more and more fractions within
the cracks until our circle looks entirely covered in points. Just
as Lisa Meitner split the atom so we have split our atomic
numerals, dissolving their discreteness into numbers of any
size we like. The set of numbers we have generated so far are
very pleasing, firstly because they appear to completely cover
our circle, and secondly because they are extremely ordered.
They show predictable patterns when expressed as decimals;
for example, the fraction 3/11 can be written as 0.272727....
It is here that the Pythagoreans wanted to stop, for they
believed these nicely behaving numbers could describe all

things in the universe. 8

Their belief was to crumble under a shocking discovery, how-
ever. The apparent order of Nature was an illusion, an ironic
flirtation, for even though it looks like we have completely
covered the circle there are also uncountably many gaps in
our scaffolding. For example, any fraction can be organised
into one of two sets: those whose square is less than 2 and
those whose square is greater than 2. The point separating
these two sets is a hole, for no fraction can square to 2. °
Another way of saying this is that if there is a number which
squares to 2 then it is a chaotic, irrational number. Its decimal
expansion will never settle down, it can never be predicted.

What we have done so far is create a ‘nearly-circle’. As the
old saying goes, “if it looks like a duck and quacks like a duck,
then it probably is a duck” The most natural thing to do is
to fill in these holes, to polish our roughly-hewn structure
until it is perfectly smooth. The operation we now assume is
the action of completion, where anything we can arbitrarily
approach with fractions, including these holes, is a number.
Remember that it is the abstract circular object and later the
sphere which are what truly exist. The dodgy identity of these
irrational numbers as ‘holes’ is no fault of their own but rather
a side-effect of our particular construction which began with
counting. In fact, irrational numbers like 7 and e are essential
to Nature, cornerstones in the pillars of the universe. Perhaps
an alternative construction of the perfectly continuous circle
is possible in which every number has an immediate solidness

8The Pythagoreans came to terms with fractions as ratios, or relations between natural numbers.
9A square is the multiplication of a number with itself. The proof of the statement is by contradiction: assume that (a/b)? = 2 where a and b have no common
q p p y
atoms (or prime factors). Then a? = 2b2, so a is even; let a = 2p. Then 2p? = b2 so b is even. a and b have the common factor of 2, which is a contradiction.

Therefore, our assumption was false; V2 is inexpressible as a fraction.



to it, or perhaps this apparent awkwardness is unavoidable.
Regardless, this is the way humans have come to terms with
numbers, and unless a maverick comes up with a construction
of the numbers that does not begin with counting, this is likely

the way it will stay.

You may have noticed a special kind of gap that we haven't
yet mentioned, which has been there from the start: the hole
at the north pole. Let's fill it in and call it oo, ‘the point at
infinity’. It is an entity that can never be reached but only
approached through counting. It is in some sense the inverse
of 0 but Nature has decided to make these polar opposites in-
compatible, for they cannot be multiplied together. oo resists
being tied down by our construction, flying within the clouds
of the abstract but remaining visible.

We have now reached our intermediate goal, a complete cir-
cle. All that is left is to revolve this around to get to our final
sphere. To do these we need a new operation which pushes
numbers into another dimension, and we denote this opera-
tion as multiplication by i. We can see that if we start at the
number 1 and do two of these 90° pushes, we end up at —1.

In other words, ¢ X ¢ = —1, or ¢ is the square root of —1.
00
-1 1
0

The (Riemann) sphere of numbers.

Finally, we have arrived at the landscape in which numbers
live, the surface of a sphere. The job of the scientist is to find
how this abstract object and the real world interact, through
measurements and experiments. Nature, the ever-mischievous
trickster, has decided to draw a veil between the two; an ex-
periment can only measure the height (latitude) of a number
on the sphere, but not the direction in which it faces. Despite
quarks and electrons having the entire surface as their arena
to perform upon, humans can only catch them in the act on part
of the stage. The discoveries in quantum physics from the last
century have shown that the universe’s existence rests upon
an object of perfect smoothness and symmetry that can never

be completely seen: a sphere of numbers.

How Squiggles Can Revitalize
Your Equations (and maybe your

life too)

By CALEB CLARK

There is a common notation used in higher level maths/physics
that often confuses students, obfuscates the core details of ex-
pressions or derivations, and honestly is just a little ugly. This
is known as 'index notation’, which features expressions like
éi€ij1A; By, for something as simple as a cross product, and
it gets particularly hairy when vector calculus is concerned.
Often teachers may say “here are eight-to-twelve vector cal-
culus identities for you to memorize (or excruciatingly prove)”.
In my experience this is not long after learning about what
derivatives are - certainly you have not had time to actually
investigate the identities - and so you are left to consider them
as long, arduous identities that just happen to emerge from
a behemoth and chaotic mess of mindless misery and tedious
calculation.

But does it have to be this way? What if | told you there
is a way to reduce 124 banal identities into ONE fundamen-
tal identity, and that you can get to the rest with just a bit
of doodling? Introducing, a pictorial representation of vector
calculus and tensor networks - or as | like to call it, squiggles.
By the end of this article, you will be convinced that there is
more to math than just numbers and symbols - there is kind

of an aesthetic creativity to it as well.

Basic Concepts

Let us begin by exploring the basic concepts of vector calculus,
and a basic drawing which can represent each of these.

Vector, Scalar, Gradient

Firstly are the numbers we are familiar with, for example
temperature, length, or mass, which are called ‘scalars’. We
will write these as just a letter inside a box.

Next is something called ‘vectors’, which we can think of
as multiple scalars packaged into one - for example to de-
scribe your position or velocity, you need to give one compo-
nent for each x—, y— and z— directions, and the vector is
7= (¢ y z) We will generally notate these as Aor B
in normal notation, but for this notation to emphasize the fact



that there is one ‘free index’ - here it is just columns - we will
write it with one line sticking out of it. A quantity such as a
matrix with two indices of columns and rows (hence with two
numbers needed to specify which entry of the matrix we are
in) would have two lines.

So a scalar s, then a vector A we would write like this:

SA -

|
S

and to multiply them we could just remove the comma and have

them float next to each other. Now for these vectors, we need
to have a notion of a derivative. For this we use the gradient,
which represents the direction and slope of steepest ascent of
a scalar function. The gradient, and its interaction with other
elements, will be the main consideration of this article. Since
the gradient acts on something, we will notate something be-
ing differentiated as being inside the bubble. For example,
V f, where f is a scalar function, we would write as

/ N\
l‘ ‘I
\ /;.-'

In order to talk about more complicated derivatives such as
V-AorV x ff we will need a way to represent - and x. Let
us look into one such way.

Dot Product Machine

Since two vectors are represented as boxes with lines stick-
ing out, the most logical notation for B - A would be just to
‘contract’ the lines (using similar language to the index no-
tation). Note that this line and boxes can do whatever they
want in terms of movement, as long as the connections remain
the same.

Now we can do something which may seem weird to anyone
not used to the index notation, or even to those used to it, but
it is one of the most powerful ideas here. We can take any
drawing from above, and remove the vectors, leaving only the
line between them. This gives us the dot product ‘machine’,
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also known as the Kronecker delta d;;. (Plugging our vectors
in, using the index notation, would be A% B;.)

(M

We can now use this to form divergence of a vector field V- A
by just connecting the lines of a vector, and the line of the
balloon V (which we will begin to colour aqua):

Cross Product Machine

Now that we've got the dot product under our belts, let's see
if we can fit the cross product in there as well. The cross
product takes in two vectors and outputs a third, so we will
need two lines for input, and one for output. This means

B

A=[3 = [C

—

(=

A

Of course, there must be some asymmetry in the cross product,
and we can include this by emphasising that inputs at the
terminal (the vertex of the lines) must be read anti-clockwise
- emphasised by the orange arrow in the above equation. The
discontinuous swapping of two lines in the machine would
then introduce a minus sign. We are otherwise still allowed
to move boxes or lines around in any continuous deformations,
as long as we don’t change the order of the connections at
the terminal.

We can similarly remove the vectors and just leave the ‘ma-
chine’ exposed; in this case we have the cross product machine,

also known as the Levi-Civita symbol, €;;y.

e 1.

Again now that we have the relevant operation, we can use it
to form a derivative, in this case the curl V x A. This would

be written by linking the A line counterclockwise of the V



balloon line, giving

Some Symmetries That Are Suddenly Obvious

Now, if there is anything a good form of mathematical nota-
tion should be able to do, it should be to capture elegant
symmetries present in the logical structure of nature and cod-
ify them into a logical, intuitively obvious framework. Even
without talking about any more concepts, we have already got

symmetries slipping out between our fingers. Take a look!

For example, one can take the dot product machine in Equa-
tion (1) and rotate it 1807; this looks the same, which captures
that 55 = 5; or A-B = B-A We could also take the ex-
pression A - (B x C) (as long as we give it back eventually).
Geometrically, any avid 3Blue1Brown viewer knows almost
by definition of the cross product that this is going to be the
volume of the parallelepiped spanned by A, B,C, and so it
should be unchanged upon permutations of those quantities.
Unfortunately, the current notation does not make this imme-
diately obvious. However, let us take a look at the graphical
notation:

Clearly we can rotate this by 120° = 7/3, and not change
the value, so the symmetry is built in to the graphical notation!

Let us try another example. If | take the expression (A X B) -
(C x D), what symmetries might it have? There seems to be
one or two up to permuting the cross products, but nothing
else appears immediately obvious, even upon staring. How-
ever, once we peek at the graphical notation

1

we see that we could also interpret it as A - (B x (C' x D)),
oras D - ((A x B) x C), or as any number of analogous ex-
pressions. This is (only part of!) the magic of this notation:
symmetries in expressions are much easier to discover at a
simple glance, without sludging through cumbersome vector
formulae or overwhelming indices.

The Only Identity You Need to Remember

It turns out that the expression from Equation (2) also shows
up in a key identity of vector calculus. The identity as follows
(which unfortunately we must show by writing out a few lines
of algebra, but the graphical notation is much more memorable
than the algebraic forms we will see shortly):

Writing this algebraically, we have

Ax(BxC)=(A-C)B-(A-B)C,
which already seems more opaque, but not too difficult to mem-

orise; however we could also extract the vectors from Equation
(3) and just leave the core of the identity

which is algebraically written as
€ €1 = 067, — 64,07

- yuck! Not only this, but we can remove or add only some of
the vectors as we needed, to extract various other identities.
This identity will be immensely useful for the computation in
the next section and many other vector computations one can
carry out.

An Example of Practical Squiggle Usage

To give an example of how to practically use this notation, let
us step through a computation of V x (A x B). First we draw
our diagram, noting that we can pull cross (or dot) product



machines out of the differentiation balloon since they are con-
stant. Connecting the product A x B to the balloon line via
another cross product machine gives

Now for ease of connecting to what we have seen earlier, let’s
move elements around but preserve the connections (this is
allowed, as we said), and write it in a form resembling the
LHS of Equation 3. It is a good idea to put a star or dash on
the A and B to remember that they are being differentiated,
while we momentarily pull them out. After doing this we use
Equation 3, and then re-insert the vectors in the balloon.

8]

A

|

-

Now we will use an evolved version of the product rule. The

basic product rule would look like

When there are vector lines involved, it turns out that we can

keep these intact - an illustration of this is below.

Applying this product rule and keeping lines intact to each
term we had above, we get
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which we can convert back into vector notation by interpreting
each term using the previous rules. This gives us the identity
as a whole being

vV.-AB

_l’_
sv]}
4
|

which looks much more intimidating written out compared to

how fun it was to derive.

Now what we have seen here are all the tools you need to
derive many other identities, such as V-(A x B) and V(A-B).
These and plenty other exercises in [1] could prove fun to at-
tempt if you happen to be stranded on an island with only a
stick to draw lines in the sand.

Conclusion

As we have mentioned, so far it may seem like this is merely a
prettier or more elegant way to write the same calculations we
are used to from before; however there is much more power in
the depths of this lanquage. For example, by taking Equation
(4) and being more frugal with the vectors we stick on, leav-
ing 2 or 3 lines (‘free indices’) exposed in each term, we can
approach some tensor identities. Additionally the very nature
of the language as free-flowing and visual invites newfound
creativity and the exploration of new shapes and hypotheses
of their possible meanings.

My personal view is that one should be comfortable with read-
ing index notation, but often when completing intermediary
calculations on a pen and paper it is far easier (and more fun!)
to doodle it out and see what happens. It also comes back and
makes reading index notation more enlightening and under-
standable. Others [2] also believe that the use of these tools
in the classroom could make vector calculus and other related
classes much more entertaining and exploratory, rather than
potentially dry and shrouded behind arduous calculations.



But hey, don’t let me keep you any longer; go get squiggling!
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Investigating Laser properties
through Cavity geometry

By RIYA RAIZADA

Abstract

Lasers are oscillators of electromagnetic waves that out-
put monochromatic, collimated beams. A Laser Cavity is
a resonator made of mirrors. It is essential for the posi-
tive feedback of radiation, enabling stimulated emission
in lasers. This experiment investigated how the geom-
etry of a cavity can be altered to optimise properties
of the laser such as stability, or how it can be used to
determine inherent attributes such as wavelength. Un-
stable points were found for three different cavity con-

figurations and occurred when the resonator length was
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larger than the radius of curvature of the mirrors. Wave-
lengths of the He-Ne laser and Alignment laser were
found to be 642 & 7 nm and 539 £ 8 nm, matching
theoretical values within uncertainties. Sources of er-
ror were determined to be human error or misalignment
errors. Future work can be done in investigating the
regions of stability for other configurations, or investi-
gating other geometric dependencies on laser cavities

such as laser output power, beam waist and divergence.

Introduction

Light Amplification by Stimulated Emission of Radiation, or
LASER for short, is an oscillator of electromagnetic waves
that outputs monochromatic, collimated beams with a Gaus-
sian intensity profile. Its invention is based primarily on the
principle of Stimulated Emission. One of the main compo-
nents that contributes to the operation of lasers is the laser
cavity, which enables the light amplification process. The aims
of this experiment were to experimentally obtain the stability
thresholds for different laser cavity configurations and com-
pare them to theoretical values, and additionally to make use
of diffraction and laser cavity geometry to find the wavelength

of different lasers.

Main Components of the Laser

First predicted by Einstein in 1917, Stimulated Emission is
the emission of photons generated by the decay of electrons
from high to low energy states catalysed by interactions with
incident photons. Emitted photons have the same direction,
phase and frequency as the incident photon. This is different
to spontaneous emissions, which can occur at any time and in
any direction [7]. Stimulated Emission requires population in-
version, which is when more electrons populate higher energy
levels than the ground state of an atom [12].

For the function of a laser, the population inversion must be
maintained for an extended period of time. This can be arti-
ficially achieved by providing the atom with energy through
the means of a pump source [14]; the transfer of energy can
be electrical, chemical, etc.

While lasing can occur with just two levels, realistically more
complex atomic configurations can assure optimum lasing. As
such, the four level laser (4LL) is typical for laser construction.



e — | cvel 4, N

Ra (fast, radiationless iransition)

Level 3, £y, Ny

P {pump
transition)

aooe L slow, laser fransition)

Level 2, f:'} Nz

Rb (fasy, radiationless iransition)

Level 1 {ground state), k', N,

Figure 1: Schematic of Four level Laser. Level 2 and 3 are
the lasing levels, and the pump transition occurs from level 1
to level 4. On the timescale of the laser transition, the transi-
tions between L4-L3 and L2-L1 occur almost instantaneously,
so the lower lasing level is always empty. Source: [8]

In this configuration the lasing levels are separate from the
pump action. The lasing material is called the gain medium
and its properties, such as the spacing between levels, can
determine the wavelength of emissions.

The Light Amplification process is another critical element of
lasers. This is the process of amplifying the amplitude of a
wave through positive feedback in an optical resonator. As
mentioned before, Stimulated Emission cannot occur without
incident photons. Lasers are thus constructed so that the gain
medium is placed within a resonator cavity in order to partially
reflect photons back toward the medium and collide with the
atoms in order to further stimulate emission [11]. Addition-
ally, lasing is dependent on an initial spontaneous decay to
kickstart the simultaneous emission.

Typically, Laser cavities consist of a set up of partially reflec-
tive mirrors that reflect select wavelengths back toward the las-
ing medium and cause constructive interference at certain inte-
ger multiples of the wavelengths (modes). These wavelengths
are amplified, while waves not in phase are lost through de-
structive interference [13].

Geometric properties of the cavity, in particular the radius of
curvature of the mirrors and the distance between them (res-
onator length), determine key features of the laser such as
phase, beam width, stability and divergence.

Laser Stability

The stability of the laser refers to the smooth intensity output
of the beam. The ratio between radius of curvature b; of the
mirrors and resonator length d determines the lasing stability.
In particular, parameters g are defined as [16]

()

b;
i=1——
g d
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For each mirror, the stability criterion is given as

0<g1-g2<1
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Figure 2: Stability criterion graphed as regions for g; v/s g2
Source: [16]
For any configuration of the laser cavity, instability of the
beam occurs when the beam is allowed to escape the res-
onator [10].

Unstable resonator

Stable resonator

Figure 3: An example of laser beam geometry in a stable and
in an unstable resonator. In particular, instability occurs when
the laser beam is reflected out of the cavity. Source: [6]

Diffraction Geometry

The geometric make up of the laser can be exploited in order
to determine key features of the laser. Diffraction is one way
in which geometric analysis of the beam can be conducted.
Incidence of a laser beam on a diffraction grating causes con-
structive and destructive interference. The diffracted intensity
distribution appears as the Fourier transform of the beam on
a screen situated such that it satisfies the far field approxima-
tion - when the distance between the grating and the screen
zgs is significantly greater than the grating size I.
Additionally, the optical path difference is dependent on prop-
erties of the diffraction grating, and constructive interference
occurs when the diffracted beam is in phase (i.e is proportional
to the wavelength).
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Figure 4: A diagram of the geometry of the path length differ-
ence § generated by a diffraction grating of width | and at an
angle of a.. Source: [16]

We have that

d=n-\=lsin(a) (6)

where n is the mode, A is the wavelength of the laser and « is
the angle at which the grating diffracts the incident beam to
the first diffracted spot. Trigonometric analysis of the diffrac-

tion set up gives a useful relation for a

_ Y1
Zgs

tan(a) (7)
where y,; is the distance between the undiffracted spot and
the first diffracted spot.

Significance

The laser cavity is one of the most important components of
the laser as it has a direct influence on the stability and ef-
ficiency of a laser [15]. With lasers having such widespread
applications to diverse fields such as spectrometry, medicine,
telecommunications, etc., the need for efficient lasers is insur-
mountable [9] These needs motivate the investigations into

geometry and stability of laser cavities.

Method

Apparatus Set up

Here is a diagram of the experimental apparatus:
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Figure 5: Experimental Setup. Obtained from [16] The com-
ponents are: (a) power supply, (b) alignment laser, (c)(i) & (it)
cavity mirrors, (d) He-Ne Laser tube, (e) right diaphragm and
(f) optical rail.

General alignment procedure

The ignition of the beam required precise alignment of all
components, such that the diffraction of the beam within the
laser tube was limited to a high degree. The alignment proce-
dure involved shining a green alignment laser with wavelength
532 nm through the cavity and laser tube, which contained
the Helium-Neon gain medium, onto a diaphragm. Instances
of diffraction presented as concentric rings around the cen-
tral beam. The inclination of each component- laser tube and
mirror holders was then adjusted with knobs to centre the
alignment beam. Then, once the pump source was on, the
second mirror was adjusted by rotating the mirror such that
the reflected beam spanned a plane across the laser tube’s
Brewster window. Ignition of the beam occurred when the re-
flected alignment laser passed through the Brewster window
with minute diffraction. This process was repeated between
measurements to optimise the laser output.

Laser Stability

The stability of the He-Ne laser was tested for three different
laser configurations. These were the combinations (with order
left and right mirrors):

o HR flat/flat and HR flat/1000 mm
o HR flat/flat and HR flat/1400 mm
o HR flat/1000 mm and HR flat/1400 mm

HR stands for high reflectivity, and in this case all mirrors
had a reflectivity >90%. Note that the mirror specification
gives left/right radit of curvature for each mirror. For each
cavity the resonator length was changed between ranges of
500 mm-1300 mm at steps of 200 mm by moving the right
mirror further down the optical rail, and once the beam was ig-
nited instances of instability (flickering) were recorded. Note
that in order to observe the phenomena for the HR flat/flat and
HR flat/1400mm configuration, an extra measurement needed
to be made at 1500 mm. Results were hence compared to the-
oretical regions of stability.

Determining Wavelength

This analysis was conducted for both the He-Ne and the align-
ment laser. The resonator length was fixed at 500 mm at the
left end of the optical rail. This time z4, was varied, in the

range 365mm-715mm at increments of 15mm. The length y,;



was measured at each distance and was then plotted against
zgs in Excel. The slope of their trend line was found numeri-
cally. Subsequent mathematical analysis was then conducted
to find the wavelengths and uncertainties, and thus compare
to expected values.

Results & Discussion

Stable and Unstable points for each config are plotted below:

U]}

e

Figure 6: Plot of g1 v/s g2 for the 3 mirror configs. The sta-
bility region 0 < g1 - g2 < 1 is sketched in red and each data
point is labelled by d(mm) at which the measurement has
been taken.

The figure above illustrates that the unstable points of the
laser occur when resonator length is greater than the radius
of curvature of the mirror (i.e. d < b;). While this is uncon-
ditionally true for flat-concave configurations, it is only the
partial truth for concave-concave cavities.

Extrapolation from the linear trend of the HR flat/1000 mm
and HR flat/1400 mm case indicates that increasing the res-
onator length such that the distance is greater than the radius
of curvature for both mirrors will map the data point to the re-
gion of stability in the third quadrant.

This result is supported by the theoretical understanding of
resonator geometry. As is demonstrated in figure 3, insta-
bility occurs when the standing wave is disturbed. For the
hemispherical case, the position of the flat mirror will steadily
shift away from the focal length (b/2). Both mirrors are of the
same size, so when d = b the point of incidence will be in the
same plane for either mirror, and increasing d after this point
will mean that the beam escapes the cavity. For the concave-
concave case the above also applies, but the curvature of the
second mirror means that the shared focus point now also con-
tributes to the stability [5]. Further experimentation beyond
the scope of this experiment could be done to investigate the
properties of this dual stability. While experimental values
fall within the theoretical range, there was still some sources
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of error. In particular, the measurement was dependent on
human observation and manual realignment. Inaccuracies in
either of these due to human error are possible and would

contribute to the observations of instability.
ys1 v/s zgs for red and green lasers

00 y=0.4164x + 0.253

350 400 450 500 550 600 650 700

zgs (mm)

Figure 7: Plot of 24, v/s ys1 for both the He-Ne Laser (Red)
and the Alignment Laser (Green). Trend lines have also been
plotted for each dataset as well as their equations.

For the He-NE Laser, Equation (3) gives

Aysl
Azgs

= tan(a) = 0.4164 — o = 22.6°

Using the fact that n = 1, | = 1.67um from specifications of
diffraction grating, Equation (2) gives

A =lsin(a) = 642 £ 7T nm
Similarly, the Alignment laser has

tan(a) = 0.3407 — a = 18.8°X = Isin(a) =539+ 8nm
where uncertainties are obtained by first using the LINEST
function for the error of the slope and then using subsequent
error propagation analysis.

Relevant literature places the wavelength of the He-Ne laser
The addition of Brewster

windows to the laser tube will also allow the transitions to oc-

to be approximately 632.8 nm[4].

cur at the higher wavelengths of 611.8nm, 629.4nm, 635.2nm
and 640.1 nm[16]. In comparison, the transitions at 635.2 nm
and 640.1nm are smaller than the experimental value, but fall
within the range of uncertainty. Specifications for the align-
ment laser are also given to be 532 nm in the lab notes. The
experimental value found is also a little high in comparison,
but within the uncertainty range. The wavelength of emission
is dependent on the spacing between lasing energy levels. A
large wavelength is indicative of lower energy and hence a
smaller spacing. As is seen in figure 7, the trend lines coin-

cide with the obtained data to a high degree. The instances



of error can be attributed to human error and calibration er-
ror of the instruments used. Additionally, the spots ranged
across some millimeters, and the centres of each were iden-
tified by observations which is prone to error. Misalignment
and diffraction of the beam within the laser tube can also affect
the diffracted spot.

Conclusion

The objective to experimentally obtain the stability thresh-
old for different laser cavity configurations and determine the
wavelength of lasers using the laser cavity geometry was ful-
filled. The stability criterion was fulfilled as per theoretic
estimations and was explained by the geometric properties of
radii of curvature of mirrors and the resonator length. The
resonator length needed to be smaller than the radii of curva-
ture for stability, and configurations with two curved mirrors
have two stable regions. Wavelengths of lasers (found to be
642nm for He-Ne and 539nm for alignment laser) were within
theoretical ranges up to some uncertainty. Further investiga-
tions into the dual stability of the HR flat/1000 mm and HR
flat/1400 mm cavity can be conducted in the future. Addition-
ally, the influence of laser cavity geometry on other properties
such as laser output power, beam waist and divergence can
also be explored. Trend lines coincide to obtained data to
a large degree. Sources of error include calibration error of
instruments, misalignment of laser configurations and human

error from observation.

References

[4] Chapter 8 - supplementary treatment. In Sun Peilin,
editor, The Management of Post-Operative Pain with
Acupuncture, pages 41-54. Churchill Livingstone, Edin-

burgh, 2007.

[5] SR Barone. Optical resonators in the unstable region.
Applied Optics, 6(5):861-863, 1967.

[6] Edmund Optics. Laser resonator modes.

[7] Aitzol Lamikiz, Eneko Ukar, Ivan Tabernero, and Silvia
Martinez. 5 - thermal advanced machining processes. In

J. Paulo Davim, editor, Modern Machining Technology,
pages 335-372. Woodhead Publishing, 2011.

[8] Bob Melish. Population inversion 4 level, 2005.
[9] NASA. What is a laser?, Feb 2021.

[10] Riidiger Paschotta. Unstable Resonators. SPIE, Septem-
ber 2009.

[11] Gabriel Popescu.
lated emission of radiation. In Principles of Biophotonics,
Volume 2, 2053-2563, pages 7-1 to 7-21. IOP Publish-
ing, 2019.

Laser: light amplification by stimu-

[12] K. Shimoda.
Series in Optical Sciences. Springer Berlin Heidelberg,
2013.

Introduction to Laser Physics. Springer

[13] William T. Silfvast. Lasers. In Robert A. Meyers, ed-
itor, Encyclopedia of Physical Science and Technology
(Third Edition), pages 267-281. Academic Press, New
York, third edition edition, 2003.

[14] Orazio Svelto, David C Hanna, et al. Principles of lasers,

volume 1. Springer, 2010.

[15] 3V TECHNOLOGY. Exploring laser cavity technology,
Jul 2023.

[16] University of Sydney, School of Physics. Experiment 41.
laser cavity, 2016.

The End!

By EVERYONE

That's a wrap to this issue of Jeremy! WOOOOHOOOO!
Almost as sweet as getting a nice round number as your an-
swer to a crazy surface integral.. If you are interested in
publishing your articles in the Jeremy magazine, email us at
jeremy.physoc@gmail.com.



Jeremy_Printl.indd 20 29/07/2024 4:44:51 PM



	Jeremy Magazine Sample - Copy
	2024 Issue 1
	Jeremy_2024_Issue1 - Copy



