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Editorial

At first glance, chaos and physics seem like opposing ideas.
Physics seeks to understand, to predict, to impose order.

Chaos resists all of that; it twists systems away from neat

equations and leaves us with outcomes that defy intuition.

But within the depths of dynamical systems around us, the
intricate dance of planetary objects, the ever-changing weather
systems around the globe, and even through something as
simple as the movement of masses attached to a string, we
find a sort of complexity. One that is deeply sensitive to
initial conditions, and the complications that occur when a
system involves too many variables. Colloquially, The word
“chaos” has a negative ring to it. But in physics, chaos is all
around us, and more beautiful than imaginable!

This issue of Jeremy is a bit chaotic. We explore this
aspect of physics and mathematics, as well as some slightly

different articles of course, through the lens of our writers.

We start off from the very famous Lorentz attractors, and
explore them in areas least expected, such as our hearts. We
then take a tangent to a book review, “Inward Bound” by

Abraham Pais, which takes us through a bit of physics history.

We then regather on how chaotic N-body systems can be
computationally modelled with some physical curiosity. If we
are still hungry for some more knowledge, we can take a look
at the chaos in the neural dynamics of our brains and explore
what we call hallucinations! Afterwards, we take a look at
how sometimes mathematical rigour can be swept under the
rug in physics by investigating the notion of continuity and
weird, unintuitive examples of them such as “Cantor’s Evil
Function” And finally, we embark on a journey to understand
spinors and Hopf fibrations in mathematical detail in what is
part 1 out of 2 of this series.

So, do we have a deal? Or are we just another set of
particles bouncing unpredictably in phase space, hoping to
converge on meaning? Either way, fasten your seatbelts. This
issue might be sensitive to initial conditions. Don’t blame us
if reading one article leads to a spontaneous interest in Chaos

theory, Analysis, Complex systems, or philosophical dread.

That’s just part of the butterfly effect.

Welcome to this beautifully unpredictable rhythm that is
Jeremy.

The Quote Competition

The winning quotes for this issue are:

“The point is, you’re not meant to understand
what I'm doing”

- Dr. Wave Ngampruetikorn

Context: A typical lecture in 3rd year condensed matter
physics!

“And now... we divide by zero”

- Prof. Florica Cirstea

Context: A mathematician does, as a mathematician should!

Would you like to publish your work? Whether it is a
short and fun blurb, or a full-on scientific paper, or some
funny quotes, Jeremy is a place to kick off your scientific
ingenuity! Send your submissions to :

jeremy.physoc@gmail.com

Meet the School of Physics

Meet Prof. Zdenka Kuncic! With a love for ancient history and
Croatian food, Zdenka has synthesised research across astrophysics
and medical imaging. Her current project? Building brain-like
devices with true artificial intelligence that sit at the crossroads
between order and chaos. ..



Chaos: Predicting the Unpredictable

From the Weather to the Heart

By Queenie Pham

In everyday language, "chaos" implies the existence of
unpredictable or random behaviour. The word usually carries
a negative connotation involving undesirable havoc or utter
pandemonium, the scale of which ranges from the notorious
rush hour traffic in Ho Chi Minh city to the clutter on your
bedroom floor.

However, in the realm of physics, chaos is not necessarily
undesirable, nor is it random.

Imagine bouncing a tennis ball on a rough slab of concrete.
It will bounce around seemingly randomly. Except it isn’t
random, and if you could map out the movement of the ball
across the surface, you could predict where it would land
using Newton’s fundamental laws of motion. Yet, there will
still be tiny differences in the first bounce, caused by subtle
variations in the impact angle, mechanical force, clumps or
gentle dips in the cement. This will change where the next
bounce lands, which likely completely alters the trajectory
of the bounces thereafter, rendering the movement of the
tennis ball practically unpredictable even though it is merely
following simple rules.

For small uncertainties in the initial states of the tennis
ball, we observe an exponential increase in the uncertainty of
its future states.

The bouncing tennis ball encapsulates the principles of a
chaotic system. It is highly sensitive to initial conditions;
its motion is deterministic yet irregular - irregular but not
random. Moreover, the complex interplay between the ball’s
rotation, deformation, vertical and horizontal positions give
rise to a nonlinear system, where outputs are not linearly
proportional to inputs.

For another example of chaos, recall instances of you ar-
riving home drenched when the forecast had anticipated low
chances of rainfall. To understand where this uncertainty
came from, consider the process of predicting the weather.

Measurements of the air pressure, temperature, humidity,
heat transfer, evaporation and condensation of water are
collected from satellites and radar observations [1]. This data
is fed into mathematical models of the Earth’s atmosphere
to produce weather forecasts, which are essentially computer
simulations that describe the complex interactions between
these atmospheric elements [1]. To construct a perfectly
accurate forecast, meteorologists would have to know the
exact conditions of every single molecule in the global system,
and use these as inputs for a cosmic computer model that is the
exact mathematical representation of every physical process
involved [2]. This is highly unattainable for two reasons. The
first is a direct result of Heisenberg’s uncertainty principle
[1] - we cannot know the exact conditions of a molecule
because we cannot be certain of both the velocity and position

of an object in the same instant. This demonstrates that
our most careful measurements of the atmosphere are only
approximations. Furthermore, mathematical models are, at
best, a sophisticated rendering of reality. Initial conditions
are never known with 100% certainty, and in chaotic systems
such as this, any variations in the initial conditions may result
in exponentially diverging outputs [1].

Chaos explains why weather predictions can be inaccurate.
In fact, most meteorology apps do not display data beyond
the next fourteen days because long-term weather forecasting
is increasingly inaccurate.

Meteorological models were extensively studied by Edward
Lorenz in the 1960s. In one experiment, he simplified the
inputs to 0.506 instead of including the next three digits in
the original sequence, 0.506127 [3]. From Figure 1, the initial
pattern appeared to overlap, however the new sequence even-
tually diverged, ending up wildly different from the original.

Figure 1: Results from Lorenz’s experiment, where two trajectories
diverge although starting values differ by only 0.000127. Diagram
taken from [3].

In 1963, Lorenz’ seminal work on chaos theory culminates
with a refined mathematical model that describes atmospheric
convection, or any system that exhibits chaotic behaviour.
His system consists of three simplified variables, z, y, and z,
obeying the differential equations [4]:

dx
= =oly—a) W
dy
L —a(p-2) (2)
% oy pe Q

The parameter o represents the Prandtl number, indicating
the ratio between momentum and thermal diffusivity through
a fluid [4]. The parameter p is the Rayleigh number which
reveals whether heat transfer is dominated by convection or
conduction, and 3 denotes the relative dimension of the fluid,
or more specifically, the ratio of the width to the height of
the fluid layer [4].



Through experimentation, Lorenz found that for certain
parameters (o = 10, 3 = 8/3, and p = 28), the time series for
the z, y, and z variables from (1), (2) and (3) depict unpre-
dictable and non-periodic trajectories [5], as shown in Figure
2. By choosing different initial coordinates (z,y, z), Lorenz
plotted the curves as functions of time in a three-dimensional
space. From Figure 3, it is observed that the solutions never
intersect, thus each trajectory commits to infinite solitude,
and this divergence rate for similar trajectories is known as
the Lyapunov exponent.

500 1000 1500 2000 2500 3000 3500 4000
time

Figure 2: Time series for x (top), y (middle), z (bottom) variables,
exhibiting chaotic solutions to Lorenz’s equations for specific pa-
rameters. Data taken from [5].

It is also worth noting that all trajectories are confined in
a fixed subspace of points in three dimensions. This boxed
volume that each curve dances within is the strange attractor
(simply because it doesn’t trace a simple shape - it looks
strange). And strangely enough, the attractor forms a double-
lobed structure that resembles the wings of a butterfly -
we commonly refer to this as the Lorenz attractor. The
phenomenon of chaos is described by Lorenz himself as the
"butterfly effect", depicting how small changes in input result
in dramatically different outcomes in a complex system, akin
to how the imperceptible flapping of a butterfly wings in
Brazil could cause a tornado in Texas two weeks later [3].
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Figure 3: Three-dimensional phase space diagram of Lorenz’s
solutions. A phase space is an abstract space where each dimension
represents a variable of the system, and a phase diagram helps
visualise trajectories in the phase space by representing how the
state of the system evolves over time. Diagram taken from [5].

In essence, chaos theory applies to any system whose be-
haviour appears random, unpredictable, and non-periodic,
but is actually governed by deterministic laws. Since chaos is
a feature of many physical models, it is intrinsically embedded
in many natural systems, including the biological structure
that enables our physical existence - the human heart.

The rate and rhythm of heartbeats are controlled by the
cardiac conduction system and the autonomic nervous system
(ANS) [6]. The conduction system is regulated by autorhyth-
mic cardiac cells that generate electrical impulses without any
external stimulation. Also known as pacemaker cells, they
spontaneously dispatch electrical signals from the sinus node
to depolarise and contract the atria (upper chambers of the
heart). Following in Figure 4, the electrical signals then move
down to the AV node, through the left and right branches
of the bundle of His to finally arrive at the Purkinje fibres,
whereby ventricular depolarisation and contraction follows.
It is the coordinated contraction of the atria and ventricles
that makes up a heartbeat [6].
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Figure 4: Labelled diagram of the heart. Diagram adapted from
[7].

Thus, heart rate is indeed influenced by the pacing of spon-
taneous electrical activity from the sinus node. However, the
pumping of blood throughout the body must also accom-
modate for stimuli such as changes in physical activity and
emotional states. For this reason, the ANS - a component
of the peripheral nervous system that regulates involuntary
bodily functions, can also modulate the rhythm of pacemaker
cells. Specifically, the sympathetic division of the ANS re-
leases norepinephrine, a hormone and neurotransmitter that
elevates heart rate during the body’s ‘fight or flight’ response
[6]. Conversely, the parasympathetic component of the ANS
produces acetylcholine, a chemical signal that decreases heart
rate to assist the body return to homeostasis after a period
of stress [6].

In addition to the complex interplay between the involun-
tary nervous system and the spontaneity of autorhythmic
cardiac cells, cells that make up the heart can also sense and
respond to external forces. This mechanosensitive property
means that the heart is regulated by mechanical as well as
hormonal and electrical signals. Hence, it is very challenging
to mathematically determine the conditions of the heart, mak-
ing heart rate an output of what could be a chaotic system
[6].

A 1991 study by Dr Ary L. Goldberg, a Harvard Professor of
Medicine, explained that the most compelling clinical example
of cardiac chaos is found in dynamics of a healthy heartrate,
or the normal sinus rhythm [8]. This hypothesis is based on
the observation that heart rate in healthy individuals is not
strictly irregular, but displays self-similarity in its complex
fluctuations at different orders of magnitude [8]. As shown
in Figure 5, heartbeat can demonstrate the fractal nature of
chaotic dynamics.

Furthermore, the normal (healthy) heart rate shows a phase
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Figure 5: Time series of the normal sinus rhythm, displaying
similar patterns in all time frames. Data taken from [8].

space plot consistent with an attractor. This is opposed to
patients with pathological conditions, whose phase space
plots depicts a structural collapse of the attractor. This
is visualised in Figure 6 where the irregular trajectory was
consistently associated with ventricular arrhythmia, a heart
condition where autorhythmic cardiac cells in the ventricles
(lower chambers of the heart) produce irregular electrical
signals, resulting in an erratic rhythm of heart contractions.
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Figure 6: Phase space plots rendered from heart rate data of a

healthy subject and a patient with ventricular fibrillation (VF).
Graph taken from [9].

However, the question “Is normal heart rate chaotic?" has
been widely discussed and examined, and most conclusions
agree that the evidence was “inconclusive or negative" [10].
Arguments against Goldberg’s findings include discussions
around whether chaotic dynamics of heart rate are purely
‘deterministic’ or part ‘stochastic’ (random) [11]. Various pro-
cesses, such as the neurotransmitter release of acetylcholine by
the ANS and the opening and closing of ion channels in pace-
maker cells in the cardiac conduction system are understood
to exhibit stochastic behaviours [10]. Even if the physiological
mechanisms of cardiac activity are stochastic, deterministic

equations have been shown to accurately approximate heart-
beats [11]. This leads cardiologists to question how systems
containing stochastic terms can be labelled as chaotic [10].

Leon Glass, a Professor of Physiology at McGill University
who studied the application of nonlinear dynamics to cardiol-
ogy, commented that the question “Is cardiac chaos normal or
abnormal?" is futile unless it results in fresh insights on how
heart rate can differentiate health and disease [9]. Instead,
Glass suggests that the priority should be on understanding
the patterns of complex cardiac patterns and their application
to clinical settings [10].

Indeed, chaos analysis can be used to study attractors as-
sociated with specific heart diseases. This can be achieved by
recording a single measurement in the cardiovascular system
overtime, collecting, for example, the voltage of the ECG or
the time series of a patient’s heart rate like shown in Figure
5. If the original time series is x(t), it can be delayed to a
later time ¢ + 7 to create a new variable x(¢t + 7) or z(t — 7),
where 7 is the time delay. When these variables are plotted
against each other (Figure 6), the structure, or attractor,
of the system emerges, allowing for its underlying complex
dynamics to be reconstructed and studied [9].

Phase space diagrams reconstructed from time-delay sys-
tems can also present dimensions in place of variables. In
Figure 7, Ey is z(t) and Es is (¢t + 7) [13]. Through pro-
found inspection of the abnormalities in ECG signals and
their associated attractors, doctors may be able to recognise
healthy trajectories and identify a large number of distinct
heart diseases.

E;
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Figure 7: Two-dimensional projections of attractors for ECG
signals of three healthy (top panel) and three unhealthy (bottom
panel) cases. Diagram taken from [13].

In Lorenz’s own words, chaos occurs “when the present
determines the future, but the approximate present does not
approximately determine the future". By modelling cardiac
data on phase diagrams and analysing the attractors shown,
chaos theory has been proposed as an emerging tool for heart
disease detection, perhaps enabling a more certain future
for cardiac patients even as chaotic dynamics of the heart
continue to be investigated.
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A Book Review on Inward Bound

By Shaun Parasher

There are many books that I would
recommend to physicists or people who
are simply curious about physics. Natu-
rally, Leonard Susskind’s books serve as a
start for a gentle introduction to the foun-
dations of modern physics. Feynman’s
lectures would be an excellent continua-
tion from there. But, of course, physics
isn’t just about the equations, the experi-
ments, and their interpretations. Physics
has a rich and storied history, where the
narrative behind famous theorems and dis-
coveries are as exciting as their contents.
To this end, the book I would recommend
to anyone interested in the history of this
sublime science would be Inward Bound
by Abraham Pais.

OF MATTER AND FORCES
INTHE PHYSICAL WORLD

Figure 1: Oxford edition cover of Inward
Bound. Image taken from [1].

Abraham Pais, a renowned Dutch
physicist, is the perfect biographer to
traverse the storied history of theoretical
physics. Not only is he a maestro of the
field (having worked in the prestigious
Institute for Advanced Studies in Prince-
ton), but he was a direct witting source to
many of the key events and identities that
shaped theoretical physics as we know it
today. Many of his recounts begin with a
personal anecdote shared with the titular
physicist. Sometimes it will simply be a
casual conversation with Niels Bohr over
tea, and other times, intense rumination
over quantum mechanical calculations
alongside Feynman & Oppenheimer, et al.
In either case, Pais imbibes his recounts
with fond and fascinating passion.

Not only does Pais’ personal prox-
imity to seminal events in the history
of theoretical physics give his prose a
pleasant, organic comfort, but his fluent
explanations of otherwise awfully sophis-
ticated physics feels grounded and easy
to pick up. Of course, Inward Bound is
by no means a replacement for Matthew
Schwartz’s Quantum Field Theory, but
Pais includes the relevant equations and
explains their importance in the narrative
of the development of quantum physics.
The book’s overarching narrative is made

explicitly clear from the preface. Chapter
1 begins with Wilhelm Rontgen’s dis-
covery of X-Rays in 1895 and concludes
with the discovery of the Z boson in
the U(1) experiment in 1983. Thus, the
book’s premise is to go from ‘X to 2’
presumably with the seventy-eight years
of intermediate physics being ‘Y.

No detail is needlessly spared by
Pais. After Rontgen’s discovery comes the
long exploration of cathode rays and the
Geissler tube, culminating in J. J. Thom-
son’s plum pudding model of the atom.
The puzzles of radioactivity are steadily
unveiled through Marie Curie’s ascetic
work. The true breakthrough is the UV
catastrophe and Max Planck’s sponta-
neous genius - the breakthroughs simply
come tumbling out afterwards, and yet the
timeline feels composed and well paced.
Pais elegantly walks us through Ernest
Rutherford’s scattering experiment, upon
which Niels Bohr develops his model of
the atom. Fairly quickly we have arrived
in the 1920s, and the dawn of quantum
mechanics makes for the most exciting
chapters as Dirac, Schrédinger, Heisen-
berg, and others develop the most remark-
able (non-relativistic) theory of the atom.
The question, however, of constructing a
relativistic theory of light and matter in-
teractions is saliently unanswered as we
enter the war years.



Figure 1: Abraham Pais by Joe Selsing. Im-
age taken from [2].

Pais creates a page-turning tempo as
he regales us with the frustrating infinities
arising in perturbation theory and the
need to unify special relativity and quan-
tum mechanics. However, tensions arise
not only in the physics. Being Jewish in
the Netherlands during Hitler’s occupa-
tion, Pais was forced into hiding before
being briefly arrested at the end of the
war. After some diplomatic quagmires,
Pais was eventually able to emigrate
to Princeton under Einstein’s auspices.
This shifting perspective illuminates the
transition that theoretical physics under-
went postwar; Europe’s reputation as a
bastion of theoretical physics and emi-

nent thinkers began to tarnish, as Ernest
Lawrence’s ‘big science’ dogma flourished
in America. The construction of particle
accelerators such as the Bevatron, as well
as large laboratories such as Lawrence
Livermore and Los Alamos, meant that
particle theories could be tested the same
week they were concocted.

The Marquee event in postwar physics
was the Shelter Island conference. Pais il-
luminates the significant intellectual fury
stirred by the quest to unify relativity and
quantum mechanics. It was Feynman,
Schwinger and Tomonaga’s work that
eventually culminated in, arguably, one
of science’s best theoretical models: quan-
tum electrodynamics. The theory was
able to predict the anomalous magnetic
moment of the electron to seven decimal
places - an extraordinary feat! After the
development of quantum electrodynamics,
Pais reveals a deeper problem underlying
particle physics - the particle zoo and the
quest to develop gauge symmetries. Pais
was deeply involved in these triumphs of
mid-19th century physics, and provides
a vaulting account of the unification of
the electroweak force through quantum
field theories, as well as the subsequent
verification of the W and Z bosons during
the U(1) experiment. Admittedly, the

equations and mathematical derivations
presented in these chapters were most
certainly above a level at which I could
understand, but it was nevertheless in-
triguing to see these foreign equations
reveal the deepest and most philosoph-
ically moving consequences for matter
and fields. Pais’ explanation of QFT is
rewarding and his ambition to highlight
the pinnacle of theoretical physics does
not conflict with his ability to express the
beauty in these complicated theories. It
is this tour de force of engaging prose and
exciting physics that makes this book a
must read for physics enthusiasts.

The book ends on a tone of infectious
optimism, with Pais expressing that there
is still so much left unexplored in physics,
musing "You ain’t seen nothing yet". How
exhilarating! Although Inward Bound can
be somewhat hard to get your hands upon,
it is certainly a must-read for anyone in-
terested in physics. 9/10.
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Time, Trajectories and Chaos:
Simulating An N-Body System

By Maanya Sehjpal

"We see only snapshots, fixed forms, but nothing is
static. We are immersed in a ceaseless becoming."

The three-body problem - or more generally, the n-body
problem - is known for its resistance to simple solutions.
While Newton’s laws provide a clean, solvable model for two
interacting bodies, no general formula exists when a third is

added.

With three or more masses, gravitational interactions
become entangled. The system is still deterministic, but

highly sensitive to initial conditions.

grow exponentially over time, making long-term prediction
nearly impossible. Seeing as natural celestial bodies tend
to be influenced by more than one gravitational field, it is
incredibly useful to have some method of predicting motion

[1,3].

- Carlo Rovelli

Small differences




So, rather than solving the system, we simulate it.

A natural approach to tackling this problem is to create
an algorithm that computes the gravitational forces acting
upon each body at infinitesimal timesteps, and using that
data to predict motion over a period of time. This can be
achieved through simple Euler differentiation. However, as
we quickly discovered, this leads to large margins of error
when the solutions from this algorithm were compared with
the known solutions for far simpler Simple Harmonic motion
problems [3].

So instead, we turned instead to a more accurate method
of prediction: Runge-Kutta four (RK4) differentiation. It
looks at the current rate of change, estimates a midpoint,
refines that guess, and then projects to the next full step.

Each of these guesses is weighted and combined into a sin-
gle, more accurate update. Where Euler’s method estimates
the next state using a single slope (i.e., the derivative at the
beginning of the interval), RK4 makes four calculations per
time step:

1. k; is the slope at the beginning of the interval.

2. ko is the slope at the midpoint, using k1 to estimate the
value there.

3. kg is another midpoint slope, using ko for its estimate.

4. k4 is the slope at the end of the interval, based on k3.

In implementation, our RK4 loop calculates these values
using functions for gravitational acceleration between bod-
ies, storing intermediate "phantom" vectors for each body’s
guessed state at each sub-step. These phantom vectors are
cleared and rebuilt at every iteration, ensuring that updates
only occur after the full RK4 calculation is complete.

This method strikes a balance between computational
speed and numerical accuracy, reducing cumulative error
without significantly slowing the simulation (which is already
a brute force algorithm). For a chaotic system like the n-body
problem, RK4’s stability is essential. [3]

We framed each body’s state using phase space vectors -
grouping position x and velocity v into a single vector ‘y’:

y = [x’U]T (1)

From Newton’s second law, we know:

Y o g )
where f(z) is the gravitational acceleration on the body
as a function of position. RK4 uses four progressively refined
estimates (k; through k4) to predict how y evolves over a
small time step At.
k; is the slope at the current time %,,:

ki = [Unaf (mn)]—r (3)

ko samples the slope at the midpoint, using k; to estimate
the intermediate "phantom" state:

k3 refines that midpoint using the result from ks:
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k4 estimates the slope at the end of the interval:
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Finally, we update the full state vector with a weighted
average:

Yot =yt g latlo Atk (8)

This formulation lets us treat the system as a single evolv-
ing vector field, where each body’s position and velocity
are updated together in one sweep. One of the best design
choices we made was to structure the simulation using phase
space - that is, tracking both position and velocity together
as a single state vector for each body.

This turns what could have been a tangle of separate
variables into something clean and generalisable. It makes
integration with RK4 easier, debugging simpler, and visuali-
sation more intuitive. Instead of tracking dozens of separate
values, each body has a single evolving footprint in phase
space - a compact description of its past, present, and future
motion.

Interestingly, when the same Simple Harmonic motion
problems were run using the RK4 algorithm, the error was
negligible. While it is not a perfect rendering of the n-body
problem in a realistic sense, it allows us to have reasonable
confidence in the simulation.

Building a Small Universe in Python

The following RK4 simulation was written in Python. Each
celestial body was represented as a dictionary containing its
mass, position, velocity, and a colour label for visualisation.
These dictionaries were stored in a list - effectively a list of
all active bodies in the system.

At each timestep, the program computed the total grav-
itational force on each body from all others. Intermediate
estimates for velocity and position (used in RK4 integration)
were calculated using temporary variables (- sometimes re-
ferred to in our notes as "phantom vectors"), which allowed
all updates to be applied simultaneously after each full RK4
step.

By using phantom vectors, we ensured that intermediate
RK4 steps didn’t interfere with each other, thereby main-
taining consistency and accuracy. All bodies were updated
simultaneously after each full timestep.

Once the RK4 system was implemented, we tested it on
various initial conditions from known mathematical solutions.
Later, we created the visual rendering using Python’s built-in
libraries Matplotlib and FuncAnimation.

These outputs weren’t just illustrations - they were phase
portraits showing how the system evolved over time. All
behaviour were deterministic, but extremely sensitive to the
initial conditions. The code simply applied RK4 in a loop.

The core loop of the simulation proceeded in the following
way:

1. For each body, calculate the total gravitational force
from all other bodies using Newton’s Law of Gravitation.



2. Apply the RK4 integration scheme using these accel-
erations, generating four intermediate vectors for each
body.

3. Update each body’s position and velocity only after the
full RK4 step was completed ensuring consistency across
bodies.

Once the core was working, we ran a series of simulations
using carefully chosen initial conditions — some discovered
from mathematical literature, others inspired by literature
on periodic n-body orbits [2].

e The "Butterfly" shape (see Figure 1) emerged from a
delicately tuned three-body configuration with near-
mirror symmetry.

3D Trajectories of Celestial Bodies

—— Body 1
rrrrr Body 2
- Body 3

Figure 1: ‘Butterfly’

e The "Figure Eight" orbit (Figure 2) is a rarely known so-
lution to the three-body problem and was reconstructed
using published coordinates.

3D Trajectories of Celestial Bodies

Body 1
--- Body2
...... Body 3

00
=0.25_; 5 0.75
X (m) =075 100 10O

Figure 2: ‘Ascending Figure Eight’

e The "Yin and Yang" path (Figure 3) came from an
initial condition where two bodies began in mirrored
orbits with just enough energy to trace one another’s
curves.

3D Trajectories of Celestial Bodies

—— Body 1
rrrrr Body 2
- Body 3

00 A
—0.5 A%

5
X(m) 1.0 -1.0

Figure 3: ‘Yin and Yang’

Initial conditions for the ‘Figure Eight’ and related periodic
orbits were sourced from solutions described in a Shanghai
Jiaotong University paper [2]. These orbits, known as ’chore-
ographies’, exhibit striking symmetry.

These, however, are not just pretty visuals. They are
dynamic signatures of deterministic chaos, drawn in real-
time.

Even with RK4’s relative accuracy, two simulations with
slightly different inputs will eventually diverge. That’s not
a bug. That’s the essence of chaos: sensitivity to initial
conditions embedded in a deterministic framework.

Simulating chaos, then, isn’t just about calculating posi-
tions. It’s about recognising that in many-body problems,
prediction has a horizon. You can simulate further — but the
longer you go, the less reliable any precise outcome becomes.

What our simulation showed us wasn’t control. It was
sensitivity. Precision didn’t give us certainty — it gave us an
understanding of just how uncertain a deterministic system
could be.

Credit for the core numerical implementation and RK4
integration goes to the very talented Charlie Abbey.
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A Cluttered Desk is a Cluttered Mind:

Neural Dynamics and Their Hallucinations as a Complex System

By Jude L. Metcalf

Physics and the Brain

The human brain is an incredible thing. Even the way a
small part of the brain works to find the things we see every
second is so rich, and gives us much to think about. There is
some chaos to the dynamics of the brain in certain regimes,
often as a result of the desire for pattern recognition being
let loose and creating runaway feedback. It is chaotic in the
technical sense that the brain functions as a very sensitive
nonlinear system — but also chaotic in the normal sense. As
we will see, the brain works with a lot of information at once,
and somehow can still think straight. Most of the time.

Here we look at how modelling the primary visual cortex
(V1) in two different ways will give chaotic responses, which
each cause what we could call hallucinations; the self-driving
responses of our neurons not connected to input vision. In the
first case, we learn how the brain tries to recognise patterns
and show them to us, hallucination-free. In the second part,
we see how hallucinations become real in neuron dynamics.

V1, for our purposes, is a large network of around 140
million neurons, each of which is responsible for a single cell
on the retina [1]. Neuroscientists are confident that V1 is
responsible for very primitive image recognition, such as the
response to contours, lines, shapes, and kinds of irritating
irregularities in otherwise very neat and tidy patterns. Here
we present one theory that V1 is part of a feedback loop
with the rest of the brain, that tells you where interesting
things are, and says look over here! something interesting!
and you obey, and look. The technical term for a map of the
interesting parts of an image is a saliency map — and so
this theory is called the V1 Saliency Hypothesis or VISH —
pronounced vish.

The second model I present predicts the kinds of shapes and
patterns we often see when coming in and out of anaesthesia,
or under the effects of other substances, or just when we are
very very tired. They are found to be the typically degenerate
plane wave stable eigenfunctions of a Hamiltonian governing
neuron dynamics in the brain. Physics methods come out of
nowhere to show these patterns you could — theoretically —
see yourself, with your very own eyes.

Where to Look, Where to See

Why is the way the brain sees the world and steers our eyes
towards different places a good topic for a physics article? It
may be argued that it is not. But, I think it is.

The problem of how to effectively construct a network
(the brain) to make judgements upon huge amounts of data
(visual objects), is a problem faced by physicists everywhere.
The brain, or more specifically V1, shows time and again the
elegant frameworks to judge significant amounts of data at
once. And we don’t need to go too far into the methods of
modelling neurons to learn a lot.

V1SH and the Saliency Map

The best thoughts come from the most unexpected places,
in physics and much else besides. We see some of the most
important events coming from the everyday lives of the people
who only later are given a voice in the world that couldn’t
accept them. For us, an idea came from an award-winning
woman scientist who placed first in the competitive CUSPEA
postgraduate examinations and would go on to found world-
leading labs in renowned institutes of study. The story of Li
Zhaoping and her ‘V1 Saliency Hypothesis’ is a testament to
the strength and beauty of modern science.

What is VISH? V1SH concerns V1 and its role in pre-
processing the images presented to the eyes and sent through
the brain. The hypothesis states that one of the roles of V1 is
to create a map of visual input data and devote greater mental
attention to certain areas of interest. This saliency map is
made pre-attentively, before you can even think about it, to
leave space for everything else our brain does. You wouldn’t
even recognise you're doing it, but every second we often
make up to 3 of these gaze-fixing eye movements known as
‘saccades’ to the interesting parts of the world, often without
realising it [4, 5]. V1SH gives a very concrete mathematical
model of the map created by nonlinear neuronal dynamics
which connect the individual correlations of neuron firing to
the potential mapping activities of V1. And best of all, it
has some quite good support from neuroscience which leads
us to believe it’s true!

The Model and the Math

The nonlinearity of the map from the intensity of light to
saliency (1) will amplify certain objects in an image, and
move the gaze to these more interesting features. A good
model of our neurons requires both the excitatory neurons,
as we model here, and “hidden” interneurons which interact
between neurons to inhibit their interaction. This allows
global oscillations of the saliency mapping strength about
stable values [5]. We use the model which had been histori-
cally used before the model proposed by Zhaoping, but leads
to large scale unstable hallucination [3].

While seemingly unwanted, the interneuron oscillations
that are used in [5] stabilise vision and avoid global halluci-
nations. In other words, the oscillations don’t allow V1 to
settle into the kinds of hallucinations and chaotic instabil-
ities of the kind we will see in the second part. Above are
examples in Figures 0.1,0.2 of a particular instance of the
model applied to a photo of a post, and to the Physoc logo.

I use the bad, chaotic, and hallucinatory map of intensity
to saliency {I — g(z)} to demonstrate the VISH features,
with ‘x’ being the neuron potential. We use a differential
equation of the neuron firing at every site ‘i’, as it interacts
with all neurons ‘j’. Importantly, the map {I — g(z)} is a
stable fixed point of the differential equation at every neuron
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Original Input o0=1.5,10=1.0

Figure 0.1: Along with Figure 0.2, here is a map {I — g} from
our rudimentary V1SH model recognising verticality. The top
left, red boxed image is the initial input which our V1 ‘sees’, and

the three other images are the outputs at different parameters.

o represents the strength of the vertical pattern recognition of
the 7" matrix in (1), and Jo is the I, also in (1). Importantly,
top right recognises well the verticality of the telephone pole, but
much is to be desired in the byzantine patterns in the bottom.

Original Input 0=1.8,10=0.8

0=2.0, lo=1.0 0=4.0, l0=0.5

Figure 0.2: The same model applied to the Physoc logo (see
Figure 0.1). Again, the top right shows the verticality of certain
letters well (especially ‘H’, ‘Y’, and ‘O’), but hallucinates much
in the bottom images.

with neuron potential. Even this simplified equation is quite
ugly:

T; = _mi—'_ZTi*j g(xj)+Ii+Io (1)

all 7

Let’s unpack this, since it is not immediately obvious what
this equation means. ‘x’, as we said, is the potential across
the neuron, the only output that can be measured, or used
in computation. The dynamics of the firing is controlled by
the matrix of interactions between neurons 7 and j called T,
with elements 7;;. The firing of neuron 7 is also controlled by
the intensity of light seen by neuron 7 as I;, and a nonlinear
input I,. T’'ll decompose these inputs in the following:

Ty = —; +Zi Ti; 9(x;) i+ I + I, (2)

The solid box is very comfortable territory. This just tells
us that the neuron firing is damped, and decays back to zero
exponentially, all else being zero. On the other side, the
dotted box can be seen as the neuron firing when the eye is
exposed to some light I;, along with a nonlinear feature of
the neuron I, which increases the firing rate to strongly pick
out features of the intensity in an image.

The dashed box then holds the key information that we
want. It links the neuron saliency across V1, allowing more
global pattern recognition to attract gaze subconsciously with
minimal devotion of brain power or attention. 7" will govern
which patterns are picked out, for instance the symmetries
of horizontal or vertical contours, length of contours, sizes of
shapes, and so on.Then, the stable values of g(x) will guide
the eye to the interesting areas of the periphery.

We can see the hallucinations of our simple model in
Figures 0.1,0.2. When the parameters are not quite right,
the brain would make up patterns everywhere we look. Focus
would be impossible, as our brain even creates patterns for
itself, always on high-alert. Instead, brain dynamics are more
complex than this simple model, and our job is to understand
how the dynamics of long range interaction, time-dependence,
and network features all act to stabilise V1 [5, 2].

Geometric Hallucinations

The previous part was focused on how the brain may be
designed to intentionally pick out contours and shapes in the
periphery to focus upon. This part shows how, given the right
mental conditions, the unintentional dynamics of neuronal
connections in V1 will cause the kind of hallucination charac-
terised by a planewave with a wavelength of a characteristic
structure in V1, the Hubel-Wiesel hypercolumn.

We will sadly not go so deeply into the mathematics of
this case, which has been thoroughly examined elsewhere
(in particular I take inspiration from [1]). All I want to
present here is how the ideas, brought from physics make
the analysis of these visual hallucinations clear and real.
The Euclidean symmetry of the network of V1 neurons,
their nonlinear interactions neurons, and runaway chaotic
perturbations all combine to produce predictable dynamics.
The strong eigenfunctions of these dynamics are the geometric
hallucinations we notice in our vision (see Figure 0.4). It’s
been documented that, under the use of drugs, anaesthesia,
or prolonged sleep deprivation, that such neuronal features
will produce such conditions [1].

Neurons in V1 have been shown to have an orientation
preference (see Figure 0.3), firing more often when presented
with a contour at some angle ¢ € [0,7]. Experimentally,
there are patches in V1 which contain all the orientation
patches twice, such that travelling through the area, one can
make a full 360° return to the original orientation. These
patches have a characteristic area of around 2.67mm?, with
width of 1.33 — 2mm (compare to the non-human patches
of V1 in Figure 0.3). These excitingly named Hubel- Wiesel
hypercolumns form units in a lattice of V1 containing in total
approximately 1300 individual hypercolumns. Our modelling
assumes this lattice to be almost continuous, with many
lattice points, which opens much analysis of brain dynamics.



Figure 0.3: V1 of a macaque (top) and a cat (bottom), each with
orientation preference mapped with their shade. The bottom cat
V1 shows the long-range interneuron connections which in V1SH
allow the oscillations which damp the hallucinations of pattern
recognition, but in our current discussion can lead to a whole
other order of hallucination. Image taken from [1].

Using very similar assumptions to those of the V1SH model
in the first part, we divide V1 into hypercolumns, allowing
excitation between neurons within each hypercolumn, and
longer range inhibititory interactions between neurons in
different hypercolumns, but only when they have the same
orientation (see the interactions in the lower part of Fig-
ure 0.3). It’s this combination of self excitation and long-
range inhibition that produces a phase transition between
good perception and geometric firing oscillations, seen as
spirals, cobwebs, tunnels, and so on, when the neurons aquire
certain firing properties.

Figure 0.4: The mapping of 2D cartesian eigenfunctions of the
symmetry transformations given from (3) to the polar coordinates
of vision, as given in [1]. Here are just two of the eigenfunctions
studied by them, and account for only one class of geometric
hallucinations reported through time by many different people. 1
highly recommend the full analysis and explanation contained in
the paper, from which these images were redrawn [1].

Equation (3) modelling the V1 neurons in their new regime
is a continuous analogue to (1), since it assumes a very fine
lattice of the hypercolumn domains in Figure 0.3. This
model, as it concerns separate behaviour as well, is also
a relabelling of functions from (1) to (3) as{z,¢, 7,1} —
{a,0,w,h}. Furthermore, w is split into the short range
hypercolumn self-interaction, and the long range intercolumn
interactions. I will not explain this one, it can be an exercise
for the reader bored enough to do so...:

a(t) = —aa(t) + /Oﬂ /}R2 w(r, ) x ola(r, §)|drdp + h(t) (3)

Equation (3) above is a simplified version of (1) in [1].
When the big integral is small, we get the result that a(t) =
h(t)/« is a stable solution. This has neurons seeing what is
there, and reporting back to the brain, “this spot is bright!”
or “this spot is dim!”. However, when the neuron output
function ola(r, ¢)] is steep, or if w(r,¢) is strong enough,
a will decouple with h. This creates oscillations in natural
wavelengths of multiples of the width of a hypercolumn across
V1 in complex patterns (see Figure 0.4). These conditions
of strong, long range interactions and sensitive neuronal
interaction have been shown to occur with hallucinogen usage,
along with sleep deprivation, or with the administration of
anaesthesia. The 2D eigenfunctions of the perturbation
analysis and their corresponding polar hallucinations are
given in Figure 0.4.

It’s interesting that such physics methods and ideas of
perturbation theory, spontaneous symmetry breaking, and
bifurcations of nonlinear differential equations find such ap-
plications to the science of the brain, and give insight into
the kinds of things we feel when not at our best.

Final Thoughts

The neuroscience of the small V1 — that makes up only about
0.1% of the neurons in our brain — is a strange inclusion
into a physics magazine. But the topic of cognition, how we
understand our own perception, and how we can understand
how to use a lot of data at once, is exciting and important.
Li Zhaoping points out that, per second, for every megabyte
of information our eyes send to our brain, humans recognise
only about 40 bits. That’s like if you read a full book, and
understood only a single word. In such a complex, interacting,
strange network of buzzing neurons, it’s incredible that we
can see our friend in the corner of our eye, or remember a
partner’s face after many years, or even read any language
at all.

The brain is the most worthy object of study, and physics
is the best method of study (maybe). It’s only natural that
we understand more about ourselves, our intelligence, and
what makes us happy by looking into the brain knowing all
we know about science and the way the world works.
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Cantor’s Evil Function: When
By Mani Shayestehfar and Thomas Zheng

To the naive mind of us undergraduate physicists, most
functions we meet are friendly and kind; they are perfectly
continuous, differentiable, and smooth enough to be Taylor-
expanded when an approximation is needed. After all, ap-
proximation is one of physicists’ greatest tools. These assump-
tions gradually become engraved into our minds. Maxwell’s
equations, Schrodinger’s wavefunctions, and the simple har-
monic oscillator, as well as many other well-known functions
in physics, all behave nicely.

But this comfort is not universal. When we step into
undergraduate mathematics courses, we are suddenly faced
with formal and delicate proofs built on careful definitions,
e-0 arguments, and pathological examples that challenge
our intuition. Physics students are often encouraged to
focus on the core concepts and skip the details, with many
mathematical proofs left as “exercises for the reader,” in
favour of physical insight. This difference in emphasis can
lead us to overlook the delicate structure of the mathematics
we rely on.

In this article, we explore an infamous example of a func-
tion which defies our intuition about what continuity and
differentiability should look like: the Cantor function. To
show that we should not brush aside these strange func-
tions as mathematical oddities, we explore how this function
appears in chaotic dynamical systems such as a pendulum
driven by periodic force. But to explore these examples, we
first need to introduce the notions of continuity and differ-
entiability from a rigorous perspective, and that requires
a precise definition of the notion of a limit, called the -6
defintion.

The -6 Definitions

The study of limits, infinite sums and calculus began in
earnest in the 17th century with the work of Isaac New-
ton (1643-1727) and Gottfried Leibniz (1646-1716), and
their work was followed by Leonhard Euler (1707-1783), the
Bernoulli family (17th—18th century), and others. While
these early mathematicians were able to produce many re-
sults, for example Euler’s famous equality > °7 , 1/n? =

Intuition Fails

72/6, they also encountered many paradoxes and contra-
dictions when working with these infinite sums and limit-
ing processes. In particular, the alternating harmonic se-
ries Y 2 (—=1)"*!/n gave mathematicians a lot of grief:
for details, Eddie Woo [2] has a nice video. It turns out
that by rearranging the order in which you sum the terms
1, —%, %, —i, %7 ... in the series, you can obtain any positive
real number!

It wasn’t until the 19th century when mathematicians
began to develop the tools to resolve the paradoxes that
arise when working with infinities. Their approach was to
formalise the notions of limits, continuity and differentiability.
In the book The Paradoxes of the Infinite, Bernard Bolzano
(1781-1848) gave the modern definition of a limit, which
states that the limit of a function f(z) at * = a is L, or
limg_,, f(z) = L, if

for each € > 0 thereisa § >0
so that for all z where 0 < |z — a| < §,
we have |f(z) — L| <e. (1)

The best way to think of this definition is like a game. If
your friend draws a vertical interval of width € around the
limit point L, the challenge for you is to find a horizontal
interval of z-values around a so that the function f maps
your interval inside of your friend’s. Intuitively, we should
be able to approximate L as closely as we want by taking x
values sufficiently close to a.

Bolzano’s work on limits was followed by Karl Weierstrass
(1815-1897) who gave the modern definition of continuity,
which states that f(z) is continuous at z = a if

for each € > 0 thereisa § >0
so that for all z where |z — a| < 4,
we have |f(z) — f(a)] <e (2)

The difference here is that a is contained within the domain
of f where in the case of a limit, this might not be the case.
Finally, the definition of a derivative is as follows: f(z) is
differentiable at x = a if a is in the domain of f and there



Your friend specifies L€

an interval around the L
proposed limit L L—e
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Figure 1: The € — ¢ game.

exists the following familiar limit:

f(z) = f(a)

lim ,
x—a

r—a
in which case we call the limiting value the derivative of f(z)
at © = a, written f’(a). We can think of the derivative as
the slope of f(z) at the point & = a, where, in particular,
constant functions that are flat have a derivative of zero.

An Unintuitive Function

It may be hard to imagine, but there exist functions that
have a derivative of zero almost everywhere, yet increase
monotonically from 0 to 1. One such example is the Cantor
function C: [0,1] — [0,1].

To explore this function, we first introduce the Cantor
set. It is a closed subset of the interval [0,1] and is defined
recursively. Starting off with [0, 1], divide the interval into
three equal sub-intervals of length % each, and then cut out
the open middle interval (%, %) We define C; := [O, %] U
[%, 1] to be the union of the remaining intervals. Then cut
out the middle 3% of the two closed intervals in C; to get the
four intervals Cy := [O, %] U [%, %] U [%, g} U [g, 1]. We can
continue the process inductively — the limit of this process is
defined to be the Cantor set, or C := N>2;C,.

Interestingly, if we keep track of how much we remove from

[0,1] each iteration, we obtain the geometric series

12 22

3T
which has a sum of one and hence the Cantor set C has zero
length (or more formally, Lebesgue measure zero).

There is a wonderful interpretation of the numbers in the
Cantor set. We are all familiar with the base 10 represen-
tation of a number z € [0,1], denoted [z]1p. Of course,
we just write z in the usual way, i.e. [z]1p = O0.x122...
where each digit z; is in {0,1...,9} and we interpret it as
x =Y > x;/107. However, we can also write z in its base

J
3, or ternary, representation

[.’E]g = 0.1’1.%2%3 “e

and x = ij/Sj.

j=1

where each z; € {0,1, 2},

3)

The ternary representation [z]; provides us with geometric
intuition for the values of the Cantor set. Recall that the
first iteration C; splits the interval [0, 1] into three equal
sub-intervals. Notice that if 1 = 0, then 2 < 1/3 so it falls

in the first sub-interval. If z; =1, then z € [£, 2) it falls in
the middle sub-interval and if z; = 2, then z € [2,1] so it
falls into the last sub-interval. Similarly, zo represents the
sub-interval that x belongs to in the next ternary subdivision.
If we repeat this, we notice that the values of € [0, 1] that
lie in the Cantor set are precisely those which do not have a
1 in their ternary representation.

We can now construct the Cantor function C(x) by defining
the values of C(x) on the open intervals that we removed
when constructing the Cantor set, and then extending C(x)
to the entire interval [0, 1].

First, define the interval U; to be what we cut out of
[0,1] to get Cy, ie. Uy :=1[0,1]\C1 = (%,%P, and define
C(z) = 3 for z € Uy. Next, consider U, := (5, g) U (g, g),
which are the sub-intervals we cut out of C; to get Cs, or
Uy := C1 \ Ca, and define C(z) = § for z € (3,%) and
C(x) =3 for z € (§,2). We can keep refining our definition
inductively — for each n, define U, := C,,_1 \ Cy, which is
the the union of 2"~! open sub-intervals, and let C attain
1/2m,3/2™,--- (2™ —1)/2" on each sub-interval in order.

This defines C for all z € U2, U, but we also need to
define C for x € C. Since the points in the Cantor set are
those without a 1 in their ternary expansion, we can simply
define the Cantor function on these numbers to attain the
value C(z) = 3772 a;/27F1.

When we work through the definitions, it turns out that
the Cantor function is continuous (the idea is that, as we
continue refining the Cantor function to finer resolutions,
the gaps between each horizontal step are filled in until we
can move continuously). Moreover, the Cantor Function
is constant and hence has a derivative of zero on each sub-
interval, and we know that the sum of the lengths of these sub-
intervals is one. Hence, for almost every value of x € [0, 1],
the Cantor function has derivative zero. Still, the Cantor
function manages to creep up from 0 to 1! This may look
like a wacky mathematical construction far removed from
the physical world, but it appears in one of the simplest of
physical systems...

A Chaotic Pendulum

You may ask: “OK. But surely the Cantor function belongs
to the dark depths of pure mathematics". We ask you, our
patient friend, to follow us in the following journey!

Let’s look at the simple pendulum driven by a periodic
force. !

Figure 4: image of pendulum

The differential equation describing the change in the angle
0 as a function of time t is

afl 4+ B0 +vsinf = A + B cos(2nt), (4)

IThe following example is taken from Per Bak’s The Cantor function

[1].
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Cr ‘ ‘ ‘
0 1/3 2/3 1
Cs ; : : : : : : :
1/9 2/9 3/9 6/9 7/9 8/9 1

Cs— — - = — = - =
0 1/9 2/9 3/9 6/9 7/9 8/9 1

0 1/9 2/9 3/9 6/9 7/9 8/9 1

Figure 2: Construction of the Cantor set

where « is inertia, 3 is the damping, and ~ is the gravitation
constant. The periodic force component is given by the
constant torque A and an external force with magnitude
B which varies periodically due to the cosine term. Let us
consider snapshots of this pendulum at discrete times t = n
where n is an integer, and so define the angle of the pendulum
at time n, 6,, alongside angular velocity, 6,,. Since equation
(4) is a 2nd order ordinary differential equation, we can write
the angle at t = n + 1, as a function P of 6,,andf,,? i.e.

9n+1 = P(en; en) (5)

Due to damping, the long-term dynamics may settle onto a
one dimensional attractor (a set to which the system evolves
to). In this case, the angular velocity becomes a function
of position: 6, = g(6,,), allowing the map P to be collapsed
into one-dimension. Hence, we can write

9n+1 = P(enag(gn)) = f(an)v (6)

where f is a “circle” map, since it maps one point 6,, on
the circle 0 < 6 < 27 onto another point 6,11 on the circle.
Even though equation (4) may not look too intimidating,
the system is not always analytically solvable, and so we
can expect to see periodic, quasi-periodic, and chaotic 3
solutions. There is nothing to fear, however. We can still
study the qualitative behaviour of the system by considering
a particular circle map f. The sine circle map is defined as

K
s = f(6n) = b+ Q+ T sin(2mb), (7)

where Q) is the bias term prescribing the frequency of the
system in the case where the nonlinear coupling constant,
K, is equal to 0. In studying this pendulum system, we
are interested in observing how the pendulum locks in to a
repeating pattern (i.e. studying its mode locking). Thus,
we consider iterations of the sine circle map, 64,605,065, ...
or, equivalently, 0, f(0), f2(6),.... The long-term average
angular displacement per iteration, or the “winding number”
W, is defined as

W = lim M

n—oo n

(®)

2This construction defines a Poincaré map, which reduces the
continuous-time dynamics of the pendulum to a discrete-time map
by sampling the system once every drive cycle.

3Periodic motion repeats exactly after some number of steps, quasi-
periodic motion never repeats but remains regular, and chaotic motion
is irregular, highly sensitive to initial conditions, and non-repeating.
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Figure 3: The Cantor Function is continuous and is constant on
almost every z € [0,1]

The winding number can obtain various forms depending on
whether the system is periodic, quasi-periodic, or chaotic. For
example, in the absence of nonlinear coupling (i.e. K = 0),
W = Q. For small K, the system may exhibit periodic or
quasi-periodic motion. If the trajectory is periodic, W = p/q
is rational, and if it is quasi-periodic, then W is irrational.
When K > 1 (i.e. a high degree of nonlinearity), chaotic dy-
namics may emerge, in which case W can be highly sensitive
to initial conditions and may fail to converge cleanly. Clearly
Q and K directly affect the winding number and hence the
system’s mode-locking (i.e. the system’s tendency to settle
into a repeating pattern with output frequency locked to a
rational multiple of the input). “Arnold’s tongue” highlights
the regions in (2, K) plane where mode-locking occurs. Fig-
ure (5) shows these regions in the darker colour.

Figure 5: Arnold tongues of the sine circle map showing regions
of mode-locking W = p/q (darker colour) in the (2, K') plane.
Tongues widen with higher K, and begin to overlap near K ~ 1,
marking the onset of chaos.

For K close to zero, all mode-locking regions are quite
small, so it is less likely that the winding number W is
rational (it is more likely for it to be irrational), whereas for
large K at the top, the regions of mode-locking widen in €2,
making rational winding numbers more common. This is
reflected in the growing size of the Arnold tongues, visible in
darker regions in figure (5).

Once we take a good look at this strange fractal, we may
wonder if there is a K > 1 for which every 2, rational or
irrational, is part of the tongue, i.e. if every € is part of some
mode-locked step when the system becomes highly nonlinear.
If we consider various A(p/q)’s, which is the size of the
interval? in Q over which the system locks into W = p/q, the

4can also be thought of as the horizontal width of the p/q tongue



plot of these intervals against W shows a staircase function
with many similarities to the Cantor function in Figure 3
(2 in horizontal, and W in vertical, axes). This function is
continuous, non-decreasing, but constant (zero derivative)
almost everywhere.

Including more steps results in a more filled-in -axis
and so to answer whether or not the mode-locked steps
will eventually cover all of the Q axis, we consider S(r),
the width of all steps wider than a given scale r. Indeed,
the space between the steps, 1 — S(r), eventually shrinks
to the Cantor set. In fact, empirically, the number of
“holes" or “gaps” larger than the scale r, denoted N(r),
follows a power law: N(r) ~ r~%  On a log-log plot,
this appears as a straight line, consistent with fractal
scaling. Power laws are especially interesting because they
signal scale-invariant behaviour where the structure looks
reasonably the same no matter how far you zoom in. This is
a clear sign of fractals and critical phenomena in physics!
To confirm this uncanny presence of the Cantor set, the
exponent is d ~ 0.87, which is precisely the dimension of
the Cantor set ®. This result means that the space between
the steps vanishes as r'~¢ as r — 0, implying that quasi-
periodic motion occupies a set of measure zero, a fractal
dust, and the system is mode-locked for almost all values of 2.

In the end, what seems like a harmless, flat, staircase-
shaped function turns out to mirror the hidden geometry of
chaos. The Cantor function is not just a mathematical curios-
ity; it leaves its mark on real dynamical systems, reminding
us that our intuition will almost certainly fail against rigour.
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Spinors Part 1: Bloch Sphere and the Hopf Fibration

By Wayne Pooley and Richard Nicotra

1 Introduction

In introductory quantum mechanics, spin—% systems are often
given as the first example of a system where classical physics
can’t capture the full story. The Stern-Gerlach experiment,
which involves shooting silver atoms through a magnetic field
and measuring their deflection, defies classical intuition — we
observe only a discrete spectrum of magnetic moments (and
hence angular momenta), as opposed to a continuous range
of values. This led to the development of quantised theories
of angular momentum and the description of an additional
intrinsic quantum property, called spin. For the electrons in
the silver atoms, which are spin—% particles, they can take a
binary spectrum: spin up and spin down.

When measured, the spins of particles like electrons behave
probabilistically. The state of the electron before measurement
is described by an expression called the wave function, denoted
|¢). In the Stern-Gerlach experiment, the particle’s interaction
with the magnetic field and subsequent measurement method
alters this wave function. Due to the probabilistic nature
of the wave function, we can only know the probabilities of
the associated pure states (spin up or down). Furthermore,
measuring a mutually orthogonal spin axis after the initial
measurement erases the information encoded in the original
state, meaning the wave function describing the original spin

axis returns to being a superposition of states rather than a
pure state.

This is where most of us come across the Bloch sphere as
a way to represent these qubit systems (qubit being short for
quantum bit, since it can be in any superposition of the two
pure states). The Bloch sphere is an informative visual tool that
represents the space of states for our qubit’s wave function and
how it can evolve with time. However, many of its mathematical
underpinnings are left to students to study individually; in aid
of this pursuit, we aim to explain more of the mathematical
background that underlies this modest ball and the wider theory
of spinors in a series of two articles, of which this is the first
(Part 2 will be published in the next Jeremy issue).

2 The full story made short

Here is our journey for Part 1 laid out from start to finish:

(C2

[

S§3 — 5 §2 >~ P!

where the hook-arrow denotes an embedding of one space into
another. We will explain and motivate each step along these
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paths as we go along.

3 The short story made long

Our qubit’s wave function, denoted [¢), can be influenced and
interfered with by the system in ways reminiscent of physical
waves. This motivates the use of complex numbers in the
construction of our state space. We treat the two independent
measurement outcomes (spin up and down) as two linearly
independent vectors |+) and |—) respectively, and then allow
these vectors to be scaled by complex coefficients «, 5. Thus,
our state space is C2.

Motivated by the idea that measuring the “overlap” of states
can predict the probability of transitioning from one state to
another, we introduce an inner product on our finite-dimensional
vector space, given by

(Ylp) = agag + B3, (1)

where * denotes complex conjugation. This leads to the notion
of a norm on our state space given by !

11911 = V(@lv) = Vol + 8P, (2)

to ensure our probabilities add up to 1, our state vectors are
normalised such that |a|? + 8|2 = 1. With these features of
the inner product and completeness (where Cauchy sequences
converge from a finite-dimensional vector space), we get a Hilbert
space, which is the typical type of space needed for representing
a quantum system.

The normalisation of C? vectors maps states [)) — %,
meaning states that differ only by a multiple of a real number
are mapped to the same unit vector, called a spinor. These live
on the unit 3-sphere

S ={(z,y,2) : ®+ 2+ 22 =1} (3)

which is described by three real coordinates embedded in a two
complex-dimensional (i.e. four real-dimensional) space. Hence,
we write S% < C2. However, there is another form of redun-
dancy in our states. Any two states that differ by a multiple
of a global phase €% are indistinguishable by measurements
according to the Born rule, so they represent the same physical
state despite being different spinors. Thus, the physical state
space can be thought of as the set of “equivalence classes” of
spinors when we divide out a factor of e?. This is what we call
the Bloch sphere.

4 First Group Connections

We begin by outlining the relevant groups needed to discuss
the formalism behind the Bloch sphere’s construction.
The unitary group of degree one

U(l)={z€C:|z|=1} (4)

is the set of complex numbers with magnitude 1. These are of
the form e, where 6 is some angle. Thus, U(1) is simply the
unit circle in C and its topology is identified with the circle S*.

1This is just the discrete L2-norm.

The Special Unitary group of degree 2
SU(2) = {U € Maty,»(C) : UTU = I,detU =1}  (5)

has elements of the form

- (g ‘f) . (6)

The determinant condition is equivalent to
o> + 8] =1, (7)

which should ring some bells — this is the norm-squared of a
spinor [¢) = [, 8] € §% — C2. SU(2) is also described with
3 real components (like spinors prior to the removal of global
phase), so one can construct a diffeomorphism from SU(2) — S3
that allows us to identify the group SU(2) with the topological
structure of S% and vice versa:

(0}

(o, B > U = (ﬁ ’ ) )

Therefore, the 3-sphere S? = SU(2) as smooth manifolds, and
we find that spinors and their corresponding SU(2) matrices
encode the same information. The matrix contains the corre-
sponding spinor as its first column and its orthonormal pair as
the second column, satisfying the det U = 1 condition. However,
there is a difference between a SU(2) matrix and its correspond-
ing spinor, and that difference is that the former can act on
the latter to transform spin states; this difference, and its con-
sequences, will be made clear in the mathematical formalism
developed in Part 2 of this series.

5 Spinors and the Riemann Sphere

We’re now going to slow down and consider spinors from first
principles, along the way discussing how:

1. Spinors represent a body’s rotation by encoding informa-
tion about the axis and direction of rotation.

2. Spinors that are orthogonal represent antipodal states on
the Bloch sphere, and vice versa. (This seems unintuitive
because orthogonal vectors are usually thought of as being
perpendicular, not opposite.)

3. Rotating the physical state space by an angle 27 returns
the spinor — |¢), and rotating again by 27 gets you back
to |1). In general, rotating a physical state vector by a
given angle only rotates the corresponding spinor by half
that angle, and vice versa.

In fact, only the first two properties will be discussed here. The
third will be thoroughly discussed in Part 2 of this series.
Although the Bloch sphere provides a way of visualising the
physical states, it doesn’t immediately help to visualise trans-
formations. Meanwhile, spinors often seem unintuitive because
there isn’t an easy way to plot them or their transformations,
since we need four dimensions to plot S and visualise the effect
of multiplying a spinor by an SU(2) matrix. Instead, we look at
the construction of spinors and their transformations through
the lens of the Riemann sphere.The Riemann sphere is the most



basic object in complex analysis as it provides the codomain for
general complex functions. A thorough and simultaneously ap-
proachable treatment can be found in [2]. We will show that it
coincides with the Bloch sphere through its shared equivalence
to the complex projective line CP', and construct the theory
of spinors around it. In Part 2, we will see that the additional
complex structure it wields allows for a better (and animatable)
visualisation of spinor transformations.

The Riemann sphere is CP! is the Bloch sphere

We begin by showing how to construct the Riemann sphere
using stereographic projection. Let us start with the unit sphere
S? embedded in R and centred on the origin. Then, overlay
the complex plane C! onto the zy plane such that the real axis
overlaps the z-axis and the imaginary axis the y-axis. Then
for any point (x,y, 2z) on S?, its stereographic projection is the
complex number ( that sits at the intersection of the zy plane
and the line connecting the South Pole to (z,y, z). (See Fig. 1.)
Algebraically, this defines the map

T+ 1y

d
(fE,y,Z) 1+Z7

(8)
which has the inverse

9Re(¢) 2m(C) 1-CC*
< <1+<<*’ 1+ 1+<<*>'

9)

The North Pole is mapped to 0, the equator 2% + y? = 1 is
mapped to the unit circle S = U(1), and the entire northern
hemisphere is mapped to the interior of the unit disc. Similarly,
the southern hemisphere is mapped to the exterior (i.e. com-
plement) of the unit disc. However, as the point on the sphere
approaches the South Pole, the projection line approaches hori-
zontal and the modulus of the projected number grows without
bound; hence we introduce a “number at infinity”, called oo,
and set the projection of the South Pole to be this point. The
resulting set

C:=CU{o0}

is called the extended complex plane, and the stereographic
projection is a homeomorphism between it and the sphere, thus
allowing us to treat the two objects as topologically equivalent
and justifying the name “Riemann sphere”.

The complex projective line CP' is constructed by starting
with €2\ [0,0] and quotienting out the equivalence relation
[a,b] ~ Ala,b] VA € C\ {0}, so that all scalar multiples of
vectors are made equivalent. Denoting the equivalence class of
[a,b] as [a : b], the easiest choice of representative when b # 0
is [a/b,1], while for b = 0 there is only one equivalence class
[1:0]. Thus, the complex projective line is

(10)

CP'={[¢:1]:¢CeC}U{[1:0]}, (11)

and we can see by comparison with Eq. (10) that the set on the
left is isomorphic to C while [1 : 0] is equivalent to the point
at infinity, thus demonstrating its correspondence to C as con-
structed above. Notice what we have done here is construct the
Bloch sphere in one step: when we constructed it in Section 3,
we normalised our C? vectors first (quotienting out the real
modulus), and afterwards quotiented out the global phases e/,
meaning that in total we quotiented out multiplication by a

South Pole

Figure 1: Stereographic Projection of the point (x,y, z) on the unit
sphere to ¢ € C.

complex number in modulus-argument form. This is exactly
what we have done here, demonstrating the equivalence of CP*
and the Bloch sphere. Since we have also shown equivalence
to the Riemann sphere, which is topologically equivalent to S2,
we have shown that S? = CP! as stated in Section 2.

Spinors according to Riemann (sphere)

Now, equipped with the Riemann sphere and its connection
with CP' and the Bloch sphere, we are ready to discuss how to
represent rotation axis and direction using spinors. Let
x€C%  x =[x x] (12)
denote what will become a spinor, and since this will represent a
quantum state, assume it is normalised such that |x1|>+|x2|? =
1. (Normally, we would use column vectors here, but we’ll stick
to row vectors for now.) For a vector (z,y,2) € S, we can use
Eq. (8) to get the corresponding point on the Riemann sphere:

r+iy

Y ) H
(2,5,2) = T2

¢ (13)
which we can suggestively write as the ratio of two complex
numbers

!

, Y2 = a(l+ 2).
X2 ? ( )

x1 = a(z +iy), (14)

where o € C is a normalisation constant. It turns out that

[X1; xal = [z +iy), a(l + 2)] (15)
is a spinor representation of (z,y,z) [1], and we can use the
normalisation requirement to show that

1
o = ———.

2(14 2) 16

However, 0 := arg a is a free parameter in this representation,
so there is an infinite family of spinors that represent this S2
vector, given by the general spinor representation

T+ 1y

616’7 + 2616’
201+2) V2

X = g (17)

17
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This form can be immediately connected to the Bloch sphere,
as the immeasurable e? global phase has been extracted from
the rest of the expression. Thus we can quotient it out to get
the physical state

T+ 1y 142
V2a+2) V2
This is a basic realisation of the map S — S? referenced in
Section 2, called the Hopf fibration, which we will discuss more
abstractly (and more generally) in Section 6.

Now, if we are given a spinor [x1, x2] with xo # 0, we can
always divide by x2 to get

T+ 1y T+ 1y A T —
~ 1 (1]~ e C,
X [1+z ] {1+z } 1+2

X ~ : (18)

(19)

Such a spinor can always be associated with a unique equiv-
alence class [¢ : 1] € CP!, and hence with a unique complex
number ¢ on the Riemann sphere. Similarly, when ys = 0,
the corresponding equivalence class is [1 : 0], and hence the
corresponding point on the Riemann sphere is co. This is the
mathematical realisation of the equivalence of the Bloch sphere,
Riemann sphere, and CP*.

So up to global phase, spinors are just equivalent to numbers
on the Riemann sphere! This seems to be making things more
complicated for no reason, but as we’ll see here and in Part 2,
it’s a very powerful change in perspective, as the properties of
spinors we listed at the beginning of Section 5 become much
easier to show and visualise.

Spinors, Orthogonality, and Antipodal States

First, while every vector (z,y,2) € S? has a U(1) family of non-
identical spinors representing it, a given spinor always uniquely
determines the vector (z,y, ) it represents, which can be found
by first converting it to the equivalent complex number and
then using the inverse stereographic projection.

Second, antipodal vectors in S? have orthogonal spinor rep-
resentations, and vice versa. The forward implication is just
a simple calculation: use Eq. (8) to get the spinor representa-
tions of (z,y, 2) and (—z, —y, —z) and take their inner product,
simplifying using the fact that 22 + 32 + 22 = 1 to show that
it is zero. In fact, we can replace the spinor representations
of (z,y,2) and (—z,—y,—z) with any elements of the corre-
sponding CP! equivalence classes and still get an inner product
of 0, confirming that the spinor representations for opposite
physical spin states never overlap, regardless of phase. The
reverse implication requires showing orthogonal spinors always
represent antipodal vectors, and this can be shown using a
combination of algebraic and geometric arguments, as follows.

Suppose [a, b] and [c, d] are orthogonal spinors, and further
suppose we have eliminated the global phase so that b and d
are both real. Then (recalling * denotes complex conjugation),
orthogonality gives us

A i(arg(e)—m)

el

la] iargta) _

ac* +bd =0 ,  (20)

which can only be satisfied without breaking the normalisation
of the spinors if

d = |a|,|c| = b,arg(c) = arg(a) + 7. (21)

Thus, we must have

le.d] = [be! @+ g (22)

Exploiting the fact that orthogonality is independent of the
choice of representatives, we can divide by e*(@8(@)+7) to choose
the more interpretable representative

le.d] ~ [b, alere@+)] = [, —a], (23)

where we have used that b is real so that b = b*. Clearly, the

inner product of [a,b] and [b*, —a*] is still zero as we expect,

but now the corresponding Riemann sphere equivalents of the
physical states are

a —

[a,b] ~ [7:1} ~2eC

. (24)

Sl S}

and

b, —a"] ~ {—Z : 1] ~ —g - <(‘;)_1> eT. (25)

This latter number is just § after undergoing inversion, complex
conjugation, and multiplication by —1, the composition of which
can be easily interpreted geometrically in polar coordinates:

a i, 16—2‘0 — lem — lei(é—&-w) (26)

b r r r
So this process rotates { a half turn about 0 and inverts its mod-
ulus. When viewed through the lens of the inverse stereographic
projection, it is exactly the process that sends a number on
the Riemann sphere to its antipodal point! More loosely, since
the quotienting process makes points separated by a half turn
about the origin (like [z, y] and [—x, —y]) equivalent, half turns
in C? become full turns in CP', and quarter turns become half
turns. The seemingly strange tendency for orthogonal spinors
to correspond to antipodal states makes perfect sense.

6 Bundles

Equipped with our mathematical understanding of spinors and
orthogonality, we are now in a position to understand the most
general construction of the mapping from spinors to physical
states, using bundles and the Hopf fibration.

Let E, B, and F be topological spaces. E is our total space,
which can be thought of as the big space that we want to map
to the “smaller" base space of the bundle B. In some small
neighbourhood of our total space, it is said to "look like" the
product space B x F'; more precisely, there is a homeomorphism
¢ from V C FE to a local neighbourhood W C B x F. This
is called local triviality. The total space does not necessarily
have the same global topology as the product space, which is
what makes the mapping 7 (the projection of the bundle) from
the total space to the base space unique. Furthermore, there
exists a map proj; (projection to the first factor), that takes
us from the product space B x F' to the base space B, forming
the commutative diagram:

N U) —E2—— UxF

proj,



Figure 2: Bloch sphere with (orthogonal) spin up and spin down
states marked at antipodal points. [4]

where U C B is a subset of the base space, U x F'is a subset
of the product space, and 7=!(U) C E is a subset of the total
space. The specific case where the total space and product space
coincide is called the trivial fibre bundle, and the projection of
the fibre 7 is just the projection onto the first factor.

Hopf Fibration

We finally reach the meat and potatoes of the matter. This
is what all the set-up and construction have been marching
towards — our friendly Bloch sphere visualisation! We pick up
the story here with spinors S® in C2.

A necessary piece of the puzzle that takes us from S to S? is
a theorem stating that if G is a Lie Group and H is a closed Lie
subgroup, there exists a projection 7 to the quotient G/H as a
fibre bundle (G,G/H,w, H) [3]. This is how we will go about
defining the Hopf fibration, which is the proper name for the
map S — S2 that we have been using to move from spinors to
physical states all this time. Our Lie group G is SU(2). Each
element can be written as

fa —p
U‘@ w)

where the det U = 1 condition translates to |a|*> 4+ |3|*> = 1. By
our previous discussion of orthogonal spinors, this is equivalent
to writing

(27)

U= (u,v),

B[

are orthogonal spinorsSince (u,v) and (v,u) are distinct and
can be associated with u and v respectively, SU(2) matrices are
one-to-one with spinors, confirming that SU(2) is isomorphic to
S3. But since we can quotient global phases out of spinors to get
physical states, maybe we can do that here too! Choosing our
closed Lie subgroup H to be the circle group U(1), careful appli-
cation of Lie theory shows us that (SU(2),SU(2)/U(1), 7, U(1))
is in fact a fibre bundle, where our projection 7 is a quotient
map from our spinors in S® 2 SU(2) to SU(2)/U(1) such that
[)) ~ € |1)). This means that SU(2) matrices aren’t just trans-
formations of spinors, they can represent spinors themselves!
Rather than having separate states and transformations, we
can just use SU(2) matrices to represent everything.

(28)

where
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Thus, all our previous results for spinors can now be applied
to SU(2) matrices. In particular, quotienting by U(1) sends the
matrix U in Eq. (27) through the chain

g sl g B0
(5 @)mew{ﬁ )

poa [1:0] » oo otherwise
meaning we can associate each SU(2) matrix with an equiva-
lence class in CP! (i.e. a physical state) and a point on the
Riemann sphere (i.e. a point on S?). The quotient SU(2)/U(1)
is isomorphic to S2%, and since S® 2 SU(2), this means the fibre
bundle projection

m:SU(2) — SU(2)/U(1) (30)

is also a map

78— 5% (31)

Here, we have the general definition of the Hopf fibration.
What makes all the setup we’ve done necessary is that the total
space S® is not trivially S? x S' (where we simply take the
Cartesian product of the U(1) with the Bloch sphere). Globally,
their topologies are different, so care needs to be taken when
constructing the projection mapping.

We have finally come full circle, having arrived at the most
general definition of the Bloch sphere (i.e. SU(2)/U(1)) for a
spin—% system, and having properly identified how the Hopf fi-
bration is fundamentally responsible for our ability to associate
spinors with physical states in a consistent way. Next time,
we'll see much more of SU(2), properly analysing why it is the
main group that transforms spinors and showing how it arises
naturally when we identify rotations of S? with rotations of the
Riemann sphere. Featuring examples that can be interactively
plotted by readers at home, we will reveal the underlying struc-
ture connecting rotations to spinors, and finally explain why
rotating physical states by a given angle only rotates the spinor
by half the angle.
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And that’s it for yet another edition of Jeremy! Sor-
ry if things got a bit chaotic. Hope it wasn’t too
turbulent (ok I’ll stop now). Whether it was from
an intro to Chaos in the weather or to your hearts,
or in N-body systems, or even in friendly-looking
pendulums, and much more, we hope you enjoyed
this issue!

Don’t forget to follow our socials, and contact us
via jeremy.physoc@gmail.com for ideas, article
submissions, or anything else really!

Catch you later everyone!
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